基于单词和音素版本的数据增强,用于词汇标点符号预测

A. Zheng, Naipeng Ye, Xiao Wang, Xiao Song
{"title":"基于单词和音素版本的数据增强,用于词汇标点符号预测","authors":"A. Zheng, Naipeng Ye, Xiao Wang, Xiao Song","doi":"10.1109/CIS52066.2020.00009","DOIUrl":null,"url":null,"abstract":"Existing Lexical Punctuation Prediction methods are mainly trained on the standard clean data while losing the generalization in practical automatic speech recognition (ASR) system with ubiquitous transcription errors. To bridge the gap between clean training data and noisy testing data, we propose three random (3R) data augmentation strategies: random word deletion (RWD), random word substitution (RWS), and random phoneme edition (RPE) in both word and phoneme levels on the training dataset. Specifically, we contribute an acoustically similar vocabulary with phoneme level editions for acoustically similar word substitution. In addition, we first introduce the RoBERTa-large model into a punctuation prediction task to capture the semantics and the long-distance dependencies in language. Extensive experiments on the English dataset IWSLT2011 yield to a new state-of-the-art comparing to the prevalent punctuation prediction methods.","PeriodicalId":106959,"journal":{"name":"2020 16th International Conference on Computational Intelligence and Security (CIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"3R: Word and Phoneme Edition based Data Augmentation for Lexical Punctuation Prediction\",\"authors\":\"A. Zheng, Naipeng Ye, Xiao Wang, Xiao Song\",\"doi\":\"10.1109/CIS52066.2020.00009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing Lexical Punctuation Prediction methods are mainly trained on the standard clean data while losing the generalization in practical automatic speech recognition (ASR) system with ubiquitous transcription errors. To bridge the gap between clean training data and noisy testing data, we propose three random (3R) data augmentation strategies: random word deletion (RWD), random word substitution (RWS), and random phoneme edition (RPE) in both word and phoneme levels on the training dataset. Specifically, we contribute an acoustically similar vocabulary with phoneme level editions for acoustically similar word substitution. In addition, we first introduce the RoBERTa-large model into a punctuation prediction task to capture the semantics and the long-distance dependencies in language. Extensive experiments on the English dataset IWSLT2011 yield to a new state-of-the-art comparing to the prevalent punctuation prediction methods.\",\"PeriodicalId\":106959,\"journal\":{\"name\":\"2020 16th International Conference on Computational Intelligence and Security (CIS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 16th International Conference on Computational Intelligence and Security (CIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIS52066.2020.00009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 16th International Conference on Computational Intelligence and Security (CIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS52066.2020.00009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

现有的词法标点预测方法主要针对标准的干净数据进行训练,而在实际语音自动识别系统中,由于抄写错误普遍存在,失去了泛化能力。为了弥合干净的训练数据和有噪声的测试数据之间的差距,我们提出了三种随机(3R)数据增强策略:随机单词删除(RWD),随机单词替换(RWS)和随机音素编辑(RPE)在训练数据集的单词和音素级别。具体来说,我们贡献了一个声学相似的词汇与音素级别版本的声学相似的单词替换。此外,我们首先将RoBERTa-large模型引入到标点符号预测任务中,以捕获语言中的语义和远程依赖关系。在英语数据集IWSLT2011上进行的大量实验与流行的标点符号预测方法相比,产生了一种新的最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3R: Word and Phoneme Edition based Data Augmentation for Lexical Punctuation Prediction
Existing Lexical Punctuation Prediction methods are mainly trained on the standard clean data while losing the generalization in practical automatic speech recognition (ASR) system with ubiquitous transcription errors. To bridge the gap between clean training data and noisy testing data, we propose three random (3R) data augmentation strategies: random word deletion (RWD), random word substitution (RWS), and random phoneme edition (RPE) in both word and phoneme levels on the training dataset. Specifically, we contribute an acoustically similar vocabulary with phoneme level editions for acoustically similar word substitution. In addition, we first introduce the RoBERTa-large model into a punctuation prediction task to capture the semantics and the long-distance dependencies in language. Extensive experiments on the English dataset IWSLT2011 yield to a new state-of-the-art comparing to the prevalent punctuation prediction methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信