面向多方面的电场积分方程离散化

E. Ubeda, I. Sekulić, J. Rius, A. Heldring
{"title":"面向多方面的电场积分方程离散化","authors":"E. Ubeda, I. Sekulić, J. Rius, A. Heldring","doi":"10.1109/CEM.2015.7237423","DOIUrl":null,"url":null,"abstract":"Traditional method-of-moment implementations of the electric-field integral equation (EFIE) are based on sets of divergence-conforming basis functions, such as the loworder Rao-Wilton-Glisson (RWG) set, which arise from imposing normal continuity in the expanded current across the edges arising from the triangulation around the boundary surface. These schemes are edge-oriented and become well-suited for the analysis of conformal meshings, where pairs of adjacent triangles share common edges. However, they cannot be applied to nonconformal triangulations, arising from the interconnection of independent meshings, for example in the modular modelling of composite objects, because adjacent triangles may not have common matching edges. In this paper, we present several facetoriented implementations of the EFIE that allow the robust and versatile analysis of such objects. Two schemes arise from testing the fields over a set of tetrahedral or wedge elements attached to the boundary surface, inside the conductor. Another scheme, “tangential-normal”, derives from testing the fields over pairs of adjacent triangles such that one triangle matches a particular facet of the surface meshing and the other one is oriented inwards perpendicularly to the surface triangulation.","PeriodicalId":409699,"journal":{"name":"2015 Computational Electromagnetics International Workshop (CEM)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Versatile facet-oriented discretization of the electric-field integral equation\",\"authors\":\"E. Ubeda, I. Sekulić, J. Rius, A. Heldring\",\"doi\":\"10.1109/CEM.2015.7237423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional method-of-moment implementations of the electric-field integral equation (EFIE) are based on sets of divergence-conforming basis functions, such as the loworder Rao-Wilton-Glisson (RWG) set, which arise from imposing normal continuity in the expanded current across the edges arising from the triangulation around the boundary surface. These schemes are edge-oriented and become well-suited for the analysis of conformal meshings, where pairs of adjacent triangles share common edges. However, they cannot be applied to nonconformal triangulations, arising from the interconnection of independent meshings, for example in the modular modelling of composite objects, because adjacent triangles may not have common matching edges. In this paper, we present several facetoriented implementations of the EFIE that allow the robust and versatile analysis of such objects. Two schemes arise from testing the fields over a set of tetrahedral or wedge elements attached to the boundary surface, inside the conductor. Another scheme, “tangential-normal”, derives from testing the fields over pairs of adjacent triangles such that one triangle matches a particular facet of the surface meshing and the other one is oriented inwards perpendicularly to the surface triangulation.\",\"PeriodicalId\":409699,\"journal\":{\"name\":\"2015 Computational Electromagnetics International Workshop (CEM)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Computational Electromagnetics International Workshop (CEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEM.2015.7237423\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Computational Electromagnetics International Workshop (CEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEM.2015.7237423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

电场积分方程(EFIE)的传统矩量法实现是基于符合散度的基函数集,如低阶Rao-Wilton-Glisson (RWG)集,它是通过在边界表面周围三角化产生的边缘上施加扩展电流的法向连续性而产生的。这些方案是面向边的,非常适合于共形网格的分析,在共形网格中,成对的相邻三角形共享共同的边。然而,它们不能应用于非保形三角剖分,例如在复合物体的模块化建模中,由独立网格的互连产生,因为相邻三角形可能没有共同的匹配边。在本文中,我们提出了EFIE的几个面向面实现,这些实现允许对这些对象进行鲁棒和通用的分析。两种方案是在导体内部连接到边界表面的一组四面体或楔形元件上测试电场。另一种方案,“切法”,来自于对相邻三角形的场进行测试,这样一个三角形匹配表面网格的特定面,另一个向内垂直于表面三角剖分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Versatile facet-oriented discretization of the electric-field integral equation
Traditional method-of-moment implementations of the electric-field integral equation (EFIE) are based on sets of divergence-conforming basis functions, such as the loworder Rao-Wilton-Glisson (RWG) set, which arise from imposing normal continuity in the expanded current across the edges arising from the triangulation around the boundary surface. These schemes are edge-oriented and become well-suited for the analysis of conformal meshings, where pairs of adjacent triangles share common edges. However, they cannot be applied to nonconformal triangulations, arising from the interconnection of independent meshings, for example in the modular modelling of composite objects, because adjacent triangles may not have common matching edges. In this paper, we present several facetoriented implementations of the EFIE that allow the robust and versatile analysis of such objects. Two schemes arise from testing the fields over a set of tetrahedral or wedge elements attached to the boundary surface, inside the conductor. Another scheme, “tangential-normal”, derives from testing the fields over pairs of adjacent triangles such that one triangle matches a particular facet of the surface meshing and the other one is oriented inwards perpendicularly to the surface triangulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信