一种Nyström-Based非相干分布式源定位方法

Yonglin Ju, Zhiwen Liu, Yougen Xu
{"title":"一种Nyström-Based非相干分布式源定位方法","authors":"Yonglin Ju, Zhiwen Liu, Yougen Xu","doi":"10.1109/ICCCS49078.2020.9118538","DOIUrl":null,"url":null,"abstract":"Subspace-based methods are attractive solutions to localization problems due to their satisfactory performance and super-resolution property. In large-scale MIMO systems, the prohibitive computational complexity induced by direct eigenvalue decomposition of the high-dimensional covariance matrix severely limits their practical application. In this paper, a Nyström-based method is proposed to solve the complexity problem. A randomized SVD procedure embedded with orthogonal iteration is introduced into the proposed method which releases the computational burden to a big extent. To address the degradation problem of the proposed method in low SNR scenario, an approximate noiseless covariance matrix is devised based on Nyström approximation. Numerical experiments indicate that the proposed method can obtain adequate performance compared with the standard Nyström method as well as the classical subspace-based method, while the complexity of the proposed method is further reduced which makes it a more practical option in large-scale MIMO systems.","PeriodicalId":105556,"journal":{"name":"2020 5th International Conference on Computer and Communication Systems (ICCCS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Nyström-Based Method for Incoherently Distributed Source Localization\",\"authors\":\"Yonglin Ju, Zhiwen Liu, Yougen Xu\",\"doi\":\"10.1109/ICCCS49078.2020.9118538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Subspace-based methods are attractive solutions to localization problems due to their satisfactory performance and super-resolution property. In large-scale MIMO systems, the prohibitive computational complexity induced by direct eigenvalue decomposition of the high-dimensional covariance matrix severely limits their practical application. In this paper, a Nyström-based method is proposed to solve the complexity problem. A randomized SVD procedure embedded with orthogonal iteration is introduced into the proposed method which releases the computational burden to a big extent. To address the degradation problem of the proposed method in low SNR scenario, an approximate noiseless covariance matrix is devised based on Nyström approximation. Numerical experiments indicate that the proposed method can obtain adequate performance compared with the standard Nyström method as well as the classical subspace-based method, while the complexity of the proposed method is further reduced which makes it a more practical option in large-scale MIMO systems.\",\"PeriodicalId\":105556,\"journal\":{\"name\":\"2020 5th International Conference on Computer and Communication Systems (ICCCS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 5th International Conference on Computer and Communication Systems (ICCCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCS49078.2020.9118538\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International Conference on Computer and Communication Systems (ICCCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCS49078.2020.9118538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于子空间的方法以其令人满意的性能和超分辨率特性成为求解定位问题的有效方法。在大规模MIMO系统中,高维协方差矩阵的直接特征值分解导致的计算复杂度严重限制了其实际应用。本文提出了一种Nyström-based方法来解决复杂性问题。该方法引入了嵌入正交迭代的随机奇异值分解过程,极大地减轻了计算量。为了解决该方法在低信噪比情况下的退化问题,设计了基于Nyström近似的近似无噪声协方差矩阵。数值实验表明,与标准的Nyström方法和经典的基于子空间的方法相比,该方法可以获得足够的性能,同时进一步降低了该方法的复杂度,使其在大规模MIMO系统中更加实用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Nyström-Based Method for Incoherently Distributed Source Localization
Subspace-based methods are attractive solutions to localization problems due to their satisfactory performance and super-resolution property. In large-scale MIMO systems, the prohibitive computational complexity induced by direct eigenvalue decomposition of the high-dimensional covariance matrix severely limits their practical application. In this paper, a Nyström-based method is proposed to solve the complexity problem. A randomized SVD procedure embedded with orthogonal iteration is introduced into the proposed method which releases the computational burden to a big extent. To address the degradation problem of the proposed method in low SNR scenario, an approximate noiseless covariance matrix is devised based on Nyström approximation. Numerical experiments indicate that the proposed method can obtain adequate performance compared with the standard Nyström method as well as the classical subspace-based method, while the complexity of the proposed method is further reduced which makes it a more practical option in large-scale MIMO systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信