{"title":"计算整数矩阵的不变结构:快速算法的实践","authors":"Colton Pauderis, A. Storjohann","doi":"10.1145/2465506.2465955","DOIUrl":null,"url":null,"abstract":"We present a new heuristic algorithm for computing the determinant of a nonsingular n x n integer matrix. Extensive empirical results from a highly optimized implementation show the running time grows approximately as n3 log n, even for input matrices with a highly nontrivial Smith invariant structure. We extend the algorithm to compute the Hermite form of the input matrix. Both the determinant and Hermite form algorithm certify correctness of the computed results.","PeriodicalId":243282,"journal":{"name":"International Symposium on Symbolic and Algebraic Computation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Computing the invariant structure of integer matrices: fast algorithms into practice\",\"authors\":\"Colton Pauderis, A. Storjohann\",\"doi\":\"10.1145/2465506.2465955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new heuristic algorithm for computing the determinant of a nonsingular n x n integer matrix. Extensive empirical results from a highly optimized implementation show the running time grows approximately as n3 log n, even for input matrices with a highly nontrivial Smith invariant structure. We extend the algorithm to compute the Hermite form of the input matrix. Both the determinant and Hermite form algorithm certify correctness of the computed results.\",\"PeriodicalId\":243282,\"journal\":{\"name\":\"International Symposium on Symbolic and Algebraic Computation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Symbolic and Algebraic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2465506.2465955\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2465506.2465955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Computing the invariant structure of integer matrices: fast algorithms into practice
We present a new heuristic algorithm for computing the determinant of a nonsingular n x n integer matrix. Extensive empirical results from a highly optimized implementation show the running time grows approximately as n3 log n, even for input matrices with a highly nontrivial Smith invariant structure. We extend the algorithm to compute the Hermite form of the input matrix. Both the determinant and Hermite form algorithm certify correctness of the computed results.