结合节选会议摘要的韵律特征

Shasha Xie, Dilek Z. Hakkani-Tür, Benoit Favre, Yang Liu
{"title":"结合节选会议摘要的韵律特征","authors":"Shasha Xie, Dilek Z. Hakkani-Tür, Benoit Favre, Yang Liu","doi":"10.1109/ASRU.2009.5373302","DOIUrl":null,"url":null,"abstract":"Speech contains additional information than text that can be valuable for automatic speech summarization. In this paper, we evaluate how to effectively use acoustic/prosodic features for extractive meeting summarization, and how to integrate prosodic features with lexical and structural information for further improvement. To properly represent prosodic features, we propose different normalization methods based on speaker, topic, or local context information. Our experimental results show that using only the prosodic features we achieve better performance than using the non-prosodic information on both the human transcripts and recognition output. In addition, a decision-level combination of the prosodic and non-prosodic features yields further gain, outperforming the individual models.","PeriodicalId":292194,"journal":{"name":"2009 IEEE Workshop on Automatic Speech Recognition & Understanding","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":"{\"title\":\"Integrating prosodic features in extractive meeting summarization\",\"authors\":\"Shasha Xie, Dilek Z. Hakkani-Tür, Benoit Favre, Yang Liu\",\"doi\":\"10.1109/ASRU.2009.5373302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Speech contains additional information than text that can be valuable for automatic speech summarization. In this paper, we evaluate how to effectively use acoustic/prosodic features for extractive meeting summarization, and how to integrate prosodic features with lexical and structural information for further improvement. To properly represent prosodic features, we propose different normalization methods based on speaker, topic, or local context information. Our experimental results show that using only the prosodic features we achieve better performance than using the non-prosodic information on both the human transcripts and recognition output. In addition, a decision-level combination of the prosodic and non-prosodic features yields further gain, outperforming the individual models.\",\"PeriodicalId\":292194,\"journal\":{\"name\":\"2009 IEEE Workshop on Automatic Speech Recognition & Understanding\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"56\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Workshop on Automatic Speech Recognition & Understanding\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2009.5373302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Workshop on Automatic Speech Recognition & Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2009.5373302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 56

摘要

语音包含比文本更多的信息,这些信息对于自动语音摘要很有价值。在本文中,我们评估了如何有效地利用声学/韵律特征进行抽取会议摘要,以及如何将韵律特征与词汇和结构信息相结合以进一步改进。为了恰当地表示韵律特征,我们提出了基于说话人、主题或局部上下文信息的不同归一化方法。实验结果表明,仅使用韵律特征在人类文本和识别输出上都比使用非韵律信息取得了更好的性能。此外,韵律和非韵律特征的决策级组合产生了进一步的增益,优于单个模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrating prosodic features in extractive meeting summarization
Speech contains additional information than text that can be valuable for automatic speech summarization. In this paper, we evaluate how to effectively use acoustic/prosodic features for extractive meeting summarization, and how to integrate prosodic features with lexical and structural information for further improvement. To properly represent prosodic features, we propose different normalization methods based on speaker, topic, or local context information. Our experimental results show that using only the prosodic features we achieve better performance than using the non-prosodic information on both the human transcripts and recognition output. In addition, a decision-level combination of the prosodic and non-prosodic features yields further gain, outperforming the individual models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信