Hao Wang, Daqing Zhang, Junyi Ma, Yasha Wang, Yuxiang Wang, Dan Wu, Tao Gu, Bing Xie
{"title":"商用wifi设备人体呼吸检测:用户位置和身体方向重要吗?","authors":"Hao Wang, Daqing Zhang, Junyi Ma, Yasha Wang, Yuxiang Wang, Dan Wu, Tao Gu, Bing Xie","doi":"10.1145/2971648.2971744","DOIUrl":null,"url":null,"abstract":"Recent research has demonstrated the feasibility of detecting human respiration rate non-intrusively leveraging commodity WiFi devices. However, is it always possible to sense human respiration no matter where the subject stays and faces? What affects human respiration sensing and what's the theory behind? In this paper, we first introduce the Fresnel model in free space, then verify the Fresnel model for WiFi radio propagation in indoor environment. Leveraging the Fresnel model and WiFi radio propagation properties derived, we investigate the impact of human respiration on the receiving RF signals and develop the theory to relate one's breathing depth, location and orientation to the detectability of respiration. With the developed theory, not only when and why human respiration is detectable using WiFi devices become clear, it also sheds lights on understanding the physical limit and foundation of WiFi-based sensing systems. Intensive evaluations validate the developed theory and case studies demonstrate how to apply the theory to the respiration monitoring system design.","PeriodicalId":303792,"journal":{"name":"Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"348","resultStr":"{\"title\":\"Human respiration detection with commodity wifi devices: do user location and body orientation matter?\",\"authors\":\"Hao Wang, Daqing Zhang, Junyi Ma, Yasha Wang, Yuxiang Wang, Dan Wu, Tao Gu, Bing Xie\",\"doi\":\"10.1145/2971648.2971744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent research has demonstrated the feasibility of detecting human respiration rate non-intrusively leveraging commodity WiFi devices. However, is it always possible to sense human respiration no matter where the subject stays and faces? What affects human respiration sensing and what's the theory behind? In this paper, we first introduce the Fresnel model in free space, then verify the Fresnel model for WiFi radio propagation in indoor environment. Leveraging the Fresnel model and WiFi radio propagation properties derived, we investigate the impact of human respiration on the receiving RF signals and develop the theory to relate one's breathing depth, location and orientation to the detectability of respiration. With the developed theory, not only when and why human respiration is detectable using WiFi devices become clear, it also sheds lights on understanding the physical limit and foundation of WiFi-based sensing systems. Intensive evaluations validate the developed theory and case studies demonstrate how to apply the theory to the respiration monitoring system design.\",\"PeriodicalId\":303792,\"journal\":{\"name\":\"Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"348\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2971648.2971744\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2971648.2971744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Human respiration detection with commodity wifi devices: do user location and body orientation matter?
Recent research has demonstrated the feasibility of detecting human respiration rate non-intrusively leveraging commodity WiFi devices. However, is it always possible to sense human respiration no matter where the subject stays and faces? What affects human respiration sensing and what's the theory behind? In this paper, we first introduce the Fresnel model in free space, then verify the Fresnel model for WiFi radio propagation in indoor environment. Leveraging the Fresnel model and WiFi radio propagation properties derived, we investigate the impact of human respiration on the receiving RF signals and develop the theory to relate one's breathing depth, location and orientation to the detectability of respiration. With the developed theory, not only when and why human respiration is detectable using WiFi devices become clear, it also sheds lights on understanding the physical limit and foundation of WiFi-based sensing systems. Intensive evaluations validate the developed theory and case studies demonstrate how to apply the theory to the respiration monitoring system design.