用遗传算法对二值图像进行分形压缩

A. Aggarwal, R. Kunal
{"title":"用遗传算法对二值图像进行分形压缩","authors":"A. Aggarwal, R. Kunal","doi":"10.1109/ICNSC.2005.1461281","DOIUrl":null,"url":null,"abstract":"The paper presents a novel approach for pre-processing of binary images, which helps in subsequent application of the genetic algorithm in a parallel manner and reduces the computational time, while at the same time improves the quality of the regenerated image and makes the evolutionary approach more practical to employ for fractal image compression. Pre-processing involves division of image into disconnected regions, identification of the largest solid rectangle and final partitioning about the rectangle. The performance of the proposed partitioned technique is tested on a binary image and the experimental results are reported.","PeriodicalId":313251,"journal":{"name":"Proceedings. 2005 IEEE Networking, Sensing and Control, 2005.","volume":"03 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Partitioned fractal image compression for binary images using genetic algorithms\",\"authors\":\"A. Aggarwal, R. Kunal\",\"doi\":\"10.1109/ICNSC.2005.1461281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents a novel approach for pre-processing of binary images, which helps in subsequent application of the genetic algorithm in a parallel manner and reduces the computational time, while at the same time improves the quality of the regenerated image and makes the evolutionary approach more practical to employ for fractal image compression. Pre-processing involves division of image into disconnected regions, identification of the largest solid rectangle and final partitioning about the rectangle. The performance of the proposed partitioned technique is tested on a binary image and the experimental results are reported.\",\"PeriodicalId\":313251,\"journal\":{\"name\":\"Proceedings. 2005 IEEE Networking, Sensing and Control, 2005.\",\"volume\":\"03 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 2005 IEEE Networking, Sensing and Control, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNSC.2005.1461281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2005 IEEE Networking, Sensing and Control, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNSC.2005.1461281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种新的二值图像预处理方法,有助于遗传算法的后续并行应用,减少了计算时间,同时提高了再生图像的质量,使进化方法在分形图像压缩中更加实用。预处理包括将图像分割成不相连的区域,识别最大的实体矩形,最后对矩形进行分割。在二值图像上测试了该分割方法的性能,并给出了实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Partitioned fractal image compression for binary images using genetic algorithms
The paper presents a novel approach for pre-processing of binary images, which helps in subsequent application of the genetic algorithm in a parallel manner and reduces the computational time, while at the same time improves the quality of the regenerated image and makes the evolutionary approach more practical to employ for fractal image compression. Pre-processing involves division of image into disconnected regions, identification of the largest solid rectangle and final partitioning about the rectangle. The performance of the proposed partitioned technique is tested on a binary image and the experimental results are reported.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信