统一变换域LMS自适应滤波方法

F. Allen, M. Amin
{"title":"统一变换域LMS自适应滤波方法","authors":"F. Allen, M. Amin","doi":"10.1109/SSST.1988.17088","DOIUrl":null,"url":null,"abstract":"The authors present a generalized structure for a transform-domain least-mean-square (LMS) adaptive algorithm. In this structure, different transforms, including the Fourier transform, can be presented and used to improve both convergence and estimation over time-domain processing. The structure is general in the sense that it uses information in a successive time data blocks for each iteration in the transform domain. Further, it uses all values of the input transform to estimate each value of the desired transform. The generalized structure, therefore, accounts for nonGaussian processes as well as processes with slowly decaying correlation functions. Previously introduced structures, such as frequency-domain LMS, are special cases of the introduced structure and they result for specific time-varying environment. These can also be special cases obtained by setting some of the structure weights to zero values prior to processing. A mean-square error analysis is provided.<<ETX>>","PeriodicalId":345412,"journal":{"name":"[1988] Proceedings. The Twentieth Southeastern Symposium on System Theory","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A unified approach to transform domain LMS adaptive filtering\",\"authors\":\"F. Allen, M. Amin\",\"doi\":\"10.1109/SSST.1988.17088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors present a generalized structure for a transform-domain least-mean-square (LMS) adaptive algorithm. In this structure, different transforms, including the Fourier transform, can be presented and used to improve both convergence and estimation over time-domain processing. The structure is general in the sense that it uses information in a successive time data blocks for each iteration in the transform domain. Further, it uses all values of the input transform to estimate each value of the desired transform. The generalized structure, therefore, accounts for nonGaussian processes as well as processes with slowly decaying correlation functions. Previously introduced structures, such as frequency-domain LMS, are special cases of the introduced structure and they result for specific time-varying environment. These can also be special cases obtained by setting some of the structure weights to zero values prior to processing. A mean-square error analysis is provided.<<ETX>>\",\"PeriodicalId\":345412,\"journal\":{\"name\":\"[1988] Proceedings. The Twentieth Southeastern Symposium on System Theory\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1988] Proceedings. The Twentieth Southeastern Symposium on System Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSST.1988.17088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1988] Proceedings. The Twentieth Southeastern Symposium on System Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSST.1988.17088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了变换域最小均方(LMS)自适应算法的一种广义结构。在这种结构中,可以提出不同的变换,包括傅里叶变换,并用于改进时域处理的收敛性和估计性。该结构是通用的,因为它在变换域中的每次迭代中使用连续时间数据块中的信息。此外,它使用输入变换的所有值来估计所需变换的每个值。因此,广义结构既可以解释非高斯过程,也可以解释相关函数缓慢衰减的过程。前面介绍的结构,如频域LMS,是所介绍结构的特殊情况,是特定时变环境的结果。这些也可以是通过在处理之前将某些结构权重设置为零值而获得的特殊情况。给出了均方误差分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A unified approach to transform domain LMS adaptive filtering
The authors present a generalized structure for a transform-domain least-mean-square (LMS) adaptive algorithm. In this structure, different transforms, including the Fourier transform, can be presented and used to improve both convergence and estimation over time-domain processing. The structure is general in the sense that it uses information in a successive time data blocks for each iteration in the transform domain. Further, it uses all values of the input transform to estimate each value of the desired transform. The generalized structure, therefore, accounts for nonGaussian processes as well as processes with slowly decaying correlation functions. Previously introduced structures, such as frequency-domain LMS, are special cases of the introduced structure and they result for specific time-varying environment. These can also be special cases obtained by setting some of the structure weights to zero values prior to processing. A mean-square error analysis is provided.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信