纹理分割的形态学概率层次

D. Jeulin
{"title":"纹理分割的形态学概率层次","authors":"D. Jeulin","doi":"10.1515/mathm-2016-0012","DOIUrl":null,"url":null,"abstract":"Abstract A general methodology is introduced for texture segmentation in binary, scalar, or multispectral images. Textural information is obtained from morphological operations on images. Starting from a fine partition of the image in regions, hierarchical segmentations are designed in a probabilistic framework by means of probabilistic distances conveying the textural or morphological information, and of random markers accounting for the morphological content of the regions and of their spatial arrangement. The probabilistic hierarchies are built from binary or multiple fusion of regions.","PeriodicalId":244328,"journal":{"name":"Mathematical Morphology - Theory and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Morphological probabilistic hierarchies for texture segmentation\",\"authors\":\"D. Jeulin\",\"doi\":\"10.1515/mathm-2016-0012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A general methodology is introduced for texture segmentation in binary, scalar, or multispectral images. Textural information is obtained from morphological operations on images. Starting from a fine partition of the image in regions, hierarchical segmentations are designed in a probabilistic framework by means of probabilistic distances conveying the textural or morphological information, and of random markers accounting for the morphological content of the regions and of their spatial arrangement. The probabilistic hierarchies are built from binary or multiple fusion of regions.\",\"PeriodicalId\":244328,\"journal\":{\"name\":\"Mathematical Morphology - Theory and Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Morphology - Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/mathm-2016-0012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Morphology - Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mathm-2016-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

摘要介绍了一种用于二值、标量或多光谱图像纹理分割的通用方法。纹理信息是通过对图像进行形态学操作获得的。从区域图像的精细分割开始,通过传递纹理或形态信息的概率距离,以及表示区域形态内容及其空间排列的随机标记,在概率框架中设计分层分割。概率层次是由二元或多重区域融合建立的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Morphological probabilistic hierarchies for texture segmentation
Abstract A general methodology is introduced for texture segmentation in binary, scalar, or multispectral images. Textural information is obtained from morphological operations on images. Starting from a fine partition of the image in regions, hierarchical segmentations are designed in a probabilistic framework by means of probabilistic distances conveying the textural or morphological information, and of random markers accounting for the morphological content of the regions and of their spatial arrangement. The probabilistic hierarchies are built from binary or multiple fusion of regions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信