ModelOps:基于云的生命周期管理,用于可靠和可信的人工智能

W. Hummer, Vinod Muthusamy, T. Rausch, Parijat Dube, Kaoutar El Maghraoui, Anupama Murthi, Punleuk Oum
{"title":"ModelOps:基于云的生命周期管理,用于可靠和可信的人工智能","authors":"W. Hummer, Vinod Muthusamy, T. Rausch, Parijat Dube, Kaoutar El Maghraoui, Anupama Murthi, Punleuk Oum","doi":"10.1109/IC2E.2019.00025","DOIUrl":null,"url":null,"abstract":"This paper proposes a cloud-based framework and platform for end-to-end development and lifecycle management of artificial intelligence (AI) applications. We build on our previous work on platform-level support for cloud-managed deep learning services, and show how the principles of software lifecycle management can be leveraged and extended to enable automation, trust, reliability, traceability, quality control, and reproducibility of AI pipelines. Based on a discussion of use cases and current challenges, we describe a framework for managingAI application lifecycles and its key components. We also show concrete examples that illustrate how this framework enables managing and executing model training and continuous learning pipelines while infusing trusted AI principles.","PeriodicalId":226094,"journal":{"name":"2019 IEEE International Conference on Cloud Engineering (IC2E)","volume":"05 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"65","resultStr":"{\"title\":\"ModelOps: Cloud-Based Lifecycle Management for Reliable and Trusted AI\",\"authors\":\"W. Hummer, Vinod Muthusamy, T. Rausch, Parijat Dube, Kaoutar El Maghraoui, Anupama Murthi, Punleuk Oum\",\"doi\":\"10.1109/IC2E.2019.00025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a cloud-based framework and platform for end-to-end development and lifecycle management of artificial intelligence (AI) applications. We build on our previous work on platform-level support for cloud-managed deep learning services, and show how the principles of software lifecycle management can be leveraged and extended to enable automation, trust, reliability, traceability, quality control, and reproducibility of AI pipelines. Based on a discussion of use cases and current challenges, we describe a framework for managingAI application lifecycles and its key components. We also show concrete examples that illustrate how this framework enables managing and executing model training and continuous learning pipelines while infusing trusted AI principles.\",\"PeriodicalId\":226094,\"journal\":{\"name\":\"2019 IEEE International Conference on Cloud Engineering (IC2E)\",\"volume\":\"05 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"65\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Cloud Engineering (IC2E)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC2E.2019.00025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Cloud Engineering (IC2E)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC2E.2019.00025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 65

摘要

本文提出了一种基于云的框架和平台,用于人工智能(AI)应用的端到端开发和生命周期管理。我们在之前对云管理深度学习服务的平台级支持工作的基础上,展示了如何利用和扩展软件生命周期管理的原则,以实现人工智能管道的自动化、信任、可靠性、可追溯性、质量控制和再现性。基于对用例和当前挑战的讨论,我们描述了一个管理ai应用程序生命周期及其关键组件的框架。我们还展示了具体的例子,说明这个框架如何在注入可信的人工智能原则的同时管理和执行模型训练和持续学习管道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ModelOps: Cloud-Based Lifecycle Management for Reliable and Trusted AI
This paper proposes a cloud-based framework and platform for end-to-end development and lifecycle management of artificial intelligence (AI) applications. We build on our previous work on platform-level support for cloud-managed deep learning services, and show how the principles of software lifecycle management can be leveraged and extended to enable automation, trust, reliability, traceability, quality control, and reproducibility of AI pipelines. Based on a discussion of use cases and current challenges, we describe a framework for managingAI application lifecycles and its key components. We also show concrete examples that illustrate how this framework enables managing and executing model training and continuous learning pipelines while infusing trusted AI principles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信