基于深度强化学习的智能结构自适应振动控制

S. Honda, Yuta Imura, K. Sasaki, Ryo Takeda
{"title":"基于深度强化学习的智能结构自适应振动控制","authors":"S. Honda, Yuta Imura, K. Sasaki, Ryo Takeda","doi":"10.25042/epi-ije.082022.03","DOIUrl":null,"url":null,"abstract":"In this research, the authors developed an adaptive control method using deep reinforcement learning which is a kind of machine learning to suppress the vibration of smart structures. This method just requires information about the control response and input, and don’t require numerical models for the controlled object to design the controller. We experimented to verify the effectiveness of this method. In this experiment, a smart structure fabricated by an aluminum plate and a piezoelectric actuator was used as a controlled object. Three kinds of reinforcement learning algorithms are employed, Deep Q Network (DQN), Deep Deterministic Policy Gradient (DDPG), and Twin Delayed DDPG (TD3), and the control performance is compared. As a result, we succeeded in reducing the  norm of the frequency response to impulse disturbance by up to about 40 dB compared to the uncontrolled case. This demonstrates the applicability of the control method using deep reinforcement learning to adaptive vibration control.","PeriodicalId":387754,"journal":{"name":"EPI International Journal of Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Vibration Control of Smart Structure Using Deep Reinforcement Learning\",\"authors\":\"S. Honda, Yuta Imura, K. Sasaki, Ryo Takeda\",\"doi\":\"10.25042/epi-ije.082022.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, the authors developed an adaptive control method using deep reinforcement learning which is a kind of machine learning to suppress the vibration of smart structures. This method just requires information about the control response and input, and don’t require numerical models for the controlled object to design the controller. We experimented to verify the effectiveness of this method. In this experiment, a smart structure fabricated by an aluminum plate and a piezoelectric actuator was used as a controlled object. Three kinds of reinforcement learning algorithms are employed, Deep Q Network (DQN), Deep Deterministic Policy Gradient (DDPG), and Twin Delayed DDPG (TD3), and the control performance is compared. As a result, we succeeded in reducing the  norm of the frequency response to impulse disturbance by up to about 40 dB compared to the uncontrolled case. This demonstrates the applicability of the control method using deep reinforcement learning to adaptive vibration control.\",\"PeriodicalId\":387754,\"journal\":{\"name\":\"EPI International Journal of Engineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPI International Journal of Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25042/epi-ije.082022.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPI International Journal of Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25042/epi-ije.082022.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,作者开发了一种利用深度强化学习(一种机器学习)来抑制智能结构振动的自适应控制方法。该方法只需要控制响应和输入信息,不需要被控对象的数值模型来设计控制器。我们通过实验来验证这种方法的有效性。在本实验中,以铝板和压电驱动器组成的智能结构作为被控对象。采用深度Q网络(Deep Q Network, DQN)、深度确定性策略梯度(Deep Deterministic Policy Gradient, DDPG)和双延迟策略梯度(Twin Delayed DDPG, TD3)三种强化学习算法,并对其控制性能进行比较。结果,与不受控制的情况相比,我们成功地将脉冲干扰的频率响应范数降低了约40 dB。这证明了深度强化学习控制方法在自适应振动控制中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Vibration Control of Smart Structure Using Deep Reinforcement Learning
In this research, the authors developed an adaptive control method using deep reinforcement learning which is a kind of machine learning to suppress the vibration of smart structures. This method just requires information about the control response and input, and don’t require numerical models for the controlled object to design the controller. We experimented to verify the effectiveness of this method. In this experiment, a smart structure fabricated by an aluminum plate and a piezoelectric actuator was used as a controlled object. Three kinds of reinforcement learning algorithms are employed, Deep Q Network (DQN), Deep Deterministic Policy Gradient (DDPG), and Twin Delayed DDPG (TD3), and the control performance is compared. As a result, we succeeded in reducing the  norm of the frequency response to impulse disturbance by up to about 40 dB compared to the uncontrolled case. This demonstrates the applicability of the control method using deep reinforcement learning to adaptive vibration control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信