基于广义概率数据关联的杂波雷达扩展目标跟踪

Christian Adam, R. Schubert, G. Wanielik
{"title":"基于广义概率数据关联的杂波雷达扩展目标跟踪","authors":"Christian Adam, R. Schubert, G. Wanielik","doi":"10.1109/ITSC.2013.6728428","DOIUrl":null,"url":null,"abstract":"An important foundation for various vehicular applications is a reliable environment recognition. In this context, the simultaneous estimation of the state and the existence of an unknown number of objects under difficult detection conditions is a particular challenge. In this paper, we propose an algorithm for tracking extended objects under clutter. We propose an extended measurement model which enables the estimation of the object width using a standard Kalman filter implementation without the need for clustering the data. As this implies multiple observations generated by one object and additional clutter observations, the generalized probabilistic data association with a state-depended cardinality model is utilized. The proposed algorithm is evaluated with simulated data of a radar-based vehicle tracking system.","PeriodicalId":275768,"journal":{"name":"16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Radar-based extended object tracking under clutter using generalized probabilistic data association\",\"authors\":\"Christian Adam, R. Schubert, G. Wanielik\",\"doi\":\"10.1109/ITSC.2013.6728428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An important foundation for various vehicular applications is a reliable environment recognition. In this context, the simultaneous estimation of the state and the existence of an unknown number of objects under difficult detection conditions is a particular challenge. In this paper, we propose an algorithm for tracking extended objects under clutter. We propose an extended measurement model which enables the estimation of the object width using a standard Kalman filter implementation without the need for clustering the data. As this implies multiple observations generated by one object and additional clutter observations, the generalized probabilistic data association with a state-depended cardinality model is utilized. The proposed algorithm is evaluated with simulated data of a radar-based vehicle tracking system.\",\"PeriodicalId\":275768,\"journal\":{\"name\":\"16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2013.6728428\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2013.6728428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

可靠的环境识别是实现各种车载应用的重要基础。在这种情况下,在困难的检测条件下同时估计未知数量的物体的状态和存在是一个特别的挑战。本文提出了一种在杂波条件下跟踪扩展目标的算法。我们提出了一种扩展的测量模型,该模型可以使用标准卡尔曼滤波实现来估计目标宽度,而无需对数据进行聚类。由于这意味着由一个对象产生的多个观测值和额外的杂波观测值,因此利用了与状态相关的基数模型的广义概率数据关联。用雷达车辆跟踪系统的仿真数据对该算法进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Radar-based extended object tracking under clutter using generalized probabilistic data association
An important foundation for various vehicular applications is a reliable environment recognition. In this context, the simultaneous estimation of the state and the existence of an unknown number of objects under difficult detection conditions is a particular challenge. In this paper, we propose an algorithm for tracking extended objects under clutter. We propose an extended measurement model which enables the estimation of the object width using a standard Kalman filter implementation without the need for clustering the data. As this implies multiple observations generated by one object and additional clutter observations, the generalized probabilistic data association with a state-depended cardinality model is utilized. The proposed algorithm is evaluated with simulated data of a radar-based vehicle tracking system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信