{"title":"一种高性能微处理器,带有针对Virtex-4 FPGA优化的DSP扩展","authors":"A. Ehliar, Per Karlström, Dake Liu","doi":"10.1109/FPL.2008.4630018","DOIUrl":null,"url":null,"abstract":"As the use of FPGAs increases, the importance of highly optimized processors for FPGAs will increase. In this paper we present the microarchitecture of a soft microprocessor core optimized for the Virtex-4 architecture. The core can operate at 357 MHz, which is significantly faster than Xilinxpsila Microblaze architecture on the same FPGA. At this frequency it is necessary to keep the logic complexity down and this paper shows how this can be done while retaining sufficient functionality for a high performance processor.","PeriodicalId":137963,"journal":{"name":"2008 International Conference on Field Programmable Logic and Applications","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A high performance microprocessor with DSP extensions optimized for the Virtex-4 FPGA\",\"authors\":\"A. Ehliar, Per Karlström, Dake Liu\",\"doi\":\"10.1109/FPL.2008.4630018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the use of FPGAs increases, the importance of highly optimized processors for FPGAs will increase. In this paper we present the microarchitecture of a soft microprocessor core optimized for the Virtex-4 architecture. The core can operate at 357 MHz, which is significantly faster than Xilinxpsila Microblaze architecture on the same FPGA. At this frequency it is necessary to keep the logic complexity down and this paper shows how this can be done while retaining sufficient functionality for a high performance processor.\",\"PeriodicalId\":137963,\"journal\":{\"name\":\"2008 International Conference on Field Programmable Logic and Applications\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Conference on Field Programmable Logic and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FPL.2008.4630018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Conference on Field Programmable Logic and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPL.2008.4630018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A high performance microprocessor with DSP extensions optimized for the Virtex-4 FPGA
As the use of FPGAs increases, the importance of highly optimized processors for FPGAs will increase. In this paper we present the microarchitecture of a soft microprocessor core optimized for the Virtex-4 architecture. The core can operate at 357 MHz, which is significantly faster than Xilinxpsila Microblaze architecture on the same FPGA. At this frequency it is necessary to keep the logic complexity down and this paper shows how this can be done while retaining sufficient functionality for a high performance processor.