结合全方位范围和彩色图像的户外环境三维建模

T. Asai, M. Kanbara, N. Yokoya
{"title":"结合全方位范围和彩色图像的户外环境三维建模","authors":"T. Asai, M. Kanbara, N. Yokoya","doi":"10.1109/3DIM.2005.3","DOIUrl":null,"url":null,"abstract":"This paper describes a 3D modeling method for wide area outdoor environments which is based on integrating omnidirectional range and color images. In the proposed method, outdoor scenes can be efficiently digitized by an omnidirectional laser rangefinder which can obtain a 3D shape with high-accuracy and by an omnidirectional multi-camera system (OMS) which can capture a high-resolution color image. Multiple range images are registered by minimizing the distances between corresponding points in the different range images. In order to register multiple range images stably, points on plane portions detected from the range data are used in registration process. The position and orientation acquired by RTK-GPS and gyroscope are used as initial values of simultaneous registration. The 3D model obtained by registration of range data is mapped by textures selected from omnidirectional images in consideration of the resolution of texture and occlusions of the model. In experiments, we have carried out 3D modeling of our campus with the proposed method.","PeriodicalId":170883,"journal":{"name":"Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"3D modeling of outdoor environments by integrating omnidirectional range and color images\",\"authors\":\"T. Asai, M. Kanbara, N. Yokoya\",\"doi\":\"10.1109/3DIM.2005.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a 3D modeling method for wide area outdoor environments which is based on integrating omnidirectional range and color images. In the proposed method, outdoor scenes can be efficiently digitized by an omnidirectional laser rangefinder which can obtain a 3D shape with high-accuracy and by an omnidirectional multi-camera system (OMS) which can capture a high-resolution color image. Multiple range images are registered by minimizing the distances between corresponding points in the different range images. In order to register multiple range images stably, points on plane portions detected from the range data are used in registration process. The position and orientation acquired by RTK-GPS and gyroscope are used as initial values of simultaneous registration. The 3D model obtained by registration of range data is mapped by textures selected from omnidirectional images in consideration of the resolution of texture and occlusions of the model. In experiments, we have carried out 3D modeling of our campus with the proposed method.\",\"PeriodicalId\":170883,\"journal\":{\"name\":\"Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3DIM.2005.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DIM.2005.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

本文提出了一种基于全向距离和彩色图像相结合的广域室外环境三维建模方法。在该方法中,利用能够获得高精度三维形状的全向激光测距仪和能够捕获高分辨率彩色图像的全向多相机系统(OMS),可以有效地实现室外场景的数字化。通过最小化不同距离图像中对应点之间的距离来配准多幅距离图像。为了稳定地配准多幅距离图像,在配准过程中使用了从距离数据中检测到的平面部分上的点。利用RTK-GPS和陀螺仪获取的位置和方位作为同时配准的初始值。对距离数据进行配准得到的三维模型,在考虑纹理分辨率和模型遮挡的情况下,从全向图像中选择纹理进行映射。在实验中,我们利用所提出的方法对我们的校园进行了三维建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D modeling of outdoor environments by integrating omnidirectional range and color images
This paper describes a 3D modeling method for wide area outdoor environments which is based on integrating omnidirectional range and color images. In the proposed method, outdoor scenes can be efficiently digitized by an omnidirectional laser rangefinder which can obtain a 3D shape with high-accuracy and by an omnidirectional multi-camera system (OMS) which can capture a high-resolution color image. Multiple range images are registered by minimizing the distances between corresponding points in the different range images. In order to register multiple range images stably, points on plane portions detected from the range data are used in registration process. The position and orientation acquired by RTK-GPS and gyroscope are used as initial values of simultaneous registration. The 3D model obtained by registration of range data is mapped by textures selected from omnidirectional images in consideration of the resolution of texture and occlusions of the model. In experiments, we have carried out 3D modeling of our campus with the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信