使用MapReduce进行最近间隔连接

Qiang Zhang, Andy He, Chris Liu, Eric Lo
{"title":"使用MapReduce进行最近间隔连接","authors":"Qiang Zhang, Andy He, Chris Liu, Eric Lo","doi":"10.1109/DSAA.2016.39","DOIUrl":null,"url":null,"abstract":"The closest interval join problem is to find all the closest intervals between two interval sets R and S. Applications of closest interval join include bioinformatics and other data science. Interval data can be very large and continue to increase in size due to the advancement of data acquisition technology. In this paper, we present efficient MapReduce algorithms to compute closest interval join. Experiments based on both real and synthetic interval data demonstrated that our algorithms are efficient.","PeriodicalId":193885,"journal":{"name":"2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Closest Interval Join Using MapReduce\",\"authors\":\"Qiang Zhang, Andy He, Chris Liu, Eric Lo\",\"doi\":\"10.1109/DSAA.2016.39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The closest interval join problem is to find all the closest intervals between two interval sets R and S. Applications of closest interval join include bioinformatics and other data science. Interval data can be very large and continue to increase in size due to the advancement of data acquisition technology. In this paper, we present efficient MapReduce algorithms to compute closest interval join. Experiments based on both real and synthetic interval data demonstrated that our algorithms are efficient.\",\"PeriodicalId\":193885,\"journal\":{\"name\":\"2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSAA.2016.39\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSAA.2016.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

最接近区间连接问题是找出两个区间集R和s之间的所有最接近区间。最接近区间连接的应用包括生物信息学和其他数据科学。区间数据可能非常大,并且由于数据采集技术的进步,数据规模还在继续增加。在本文中,我们提出了高效的MapReduce算法来计算最接近区间连接。基于真实和合成区间数据的实验表明,我们的算法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Closest Interval Join Using MapReduce
The closest interval join problem is to find all the closest intervals between two interval sets R and S. Applications of closest interval join include bioinformatics and other data science. Interval data can be very large and continue to increase in size due to the advancement of data acquisition technology. In this paper, we present efficient MapReduce algorithms to compute closest interval join. Experiments based on both real and synthetic interval data demonstrated that our algorithms are efficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信