{"title":"彩色多焦成像的定位精度","authors":"M. J. Amin, Sabine Petry, J. Shaevitz, Haw Yang","doi":"10.1364/JOSAB.430594","DOIUrl":null,"url":null,"abstract":"Multifocal microscopy affords fast acquisition of microscopic 3D images. This is made possible using a multifocal grating optic, however this induces chromatic dispersion effects into the point spread function impacting image quality and single-molecule localization precision. To minimize this effect, researchers use narrow-band emission filters. However, the choice of optimal emission filter bandwidth in such systems is, thus far, unclear. This work presents a theoretical framework to investigate how the localization precision of a point emitter is affected by the emission filter bandwidth. We calculate the Cram\\'er-Rao lower bound for the 3D position of a single emitter imaged using a chromatic multifocal microscope. Results show that the localization precision improves with broader emission filter bandwidth due to increased photon throughput, despite a larger chromatic dispersion. This study provides a framework for optimally designing chromatic multifocal optics and serves as a theoretical foundation for interpretting results.","PeriodicalId":304443,"journal":{"name":"arXiv: Optics","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Localization precision in chromatic multifocal imaging\",\"authors\":\"M. J. Amin, Sabine Petry, J. Shaevitz, Haw Yang\",\"doi\":\"10.1364/JOSAB.430594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multifocal microscopy affords fast acquisition of microscopic 3D images. This is made possible using a multifocal grating optic, however this induces chromatic dispersion effects into the point spread function impacting image quality and single-molecule localization precision. To minimize this effect, researchers use narrow-band emission filters. However, the choice of optimal emission filter bandwidth in such systems is, thus far, unclear. This work presents a theoretical framework to investigate how the localization precision of a point emitter is affected by the emission filter bandwidth. We calculate the Cram\\\\'er-Rao lower bound for the 3D position of a single emitter imaged using a chromatic multifocal microscope. Results show that the localization precision improves with broader emission filter bandwidth due to increased photon throughput, despite a larger chromatic dispersion. This study provides a framework for optimally designing chromatic multifocal optics and serves as a theoretical foundation for interpretting results.\",\"PeriodicalId\":304443,\"journal\":{\"name\":\"arXiv: Optics\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/JOSAB.430594\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/JOSAB.430594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Localization precision in chromatic multifocal imaging
Multifocal microscopy affords fast acquisition of microscopic 3D images. This is made possible using a multifocal grating optic, however this induces chromatic dispersion effects into the point spread function impacting image quality and single-molecule localization precision. To minimize this effect, researchers use narrow-band emission filters. However, the choice of optimal emission filter bandwidth in such systems is, thus far, unclear. This work presents a theoretical framework to investigate how the localization precision of a point emitter is affected by the emission filter bandwidth. We calculate the Cram\'er-Rao lower bound for the 3D position of a single emitter imaged using a chromatic multifocal microscope. Results show that the localization precision improves with broader emission filter bandwidth due to increased photon throughput, despite a larger chromatic dispersion. This study provides a framework for optimally designing chromatic multifocal optics and serves as a theoretical foundation for interpretting results.