数据驱动软传感器设计的输入变量选择准则

M. Xibilia, N. Gemelli, G. Consolo
{"title":"数据驱动软传感器设计的输入变量选择准则","authors":"M. Xibilia, N. Gemelli, G. Consolo","doi":"10.1109/ICNSC.2017.8000119","DOIUrl":null,"url":null,"abstract":"In this paper the design of a Soft Sensor to estimate the sulphur concentration in a desulphuring unit of a refinery operating in Sicily is described. In particular the problem of the input variables selection is addressed by comparing two different methods. The first method is based on the generalization of the Least Absolute Shrinkage and Selection Operator (LASSO) algorithm to nonlinear models implemented by using Multi-Layer Perceptron (MLP) neural networks. The second one is based on the Lipschitz's quotient analysis. A comparison between the performance and the computational complexity exhibited by the two methods is discussed. The results show that the LASSO-MLP algorithm allows to construct a model with a low number of input variables, thus reducing computational complexity and measuring costs.","PeriodicalId":145129,"journal":{"name":"2017 IEEE 14th International Conference on Networking, Sensing and Control (ICNSC)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Input variables selection criteria for data-driven Soft Sensors design\",\"authors\":\"M. Xibilia, N. Gemelli, G. Consolo\",\"doi\":\"10.1109/ICNSC.2017.8000119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper the design of a Soft Sensor to estimate the sulphur concentration in a desulphuring unit of a refinery operating in Sicily is described. In particular the problem of the input variables selection is addressed by comparing two different methods. The first method is based on the generalization of the Least Absolute Shrinkage and Selection Operator (LASSO) algorithm to nonlinear models implemented by using Multi-Layer Perceptron (MLP) neural networks. The second one is based on the Lipschitz's quotient analysis. A comparison between the performance and the computational complexity exhibited by the two methods is discussed. The results show that the LASSO-MLP algorithm allows to construct a model with a low number of input variables, thus reducing computational complexity and measuring costs.\",\"PeriodicalId\":145129,\"journal\":{\"name\":\"2017 IEEE 14th International Conference on Networking, Sensing and Control (ICNSC)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 14th International Conference on Networking, Sensing and Control (ICNSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNSC.2017.8000119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 14th International Conference on Networking, Sensing and Control (ICNSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNSC.2017.8000119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文介绍了西西里岛某炼油厂脱硫装置硫浓度软测量装置的设计。特别是输入变量的选择问题,通过比较两种不同的方法来解决。第一种方法是将最小绝对收缩和选择算子(LASSO)算法推广到使用多层感知器(MLP)神经网络实现的非线性模型。第二种是基于利普希茨商分析。比较了两种方法的性能和计算复杂度。结果表明,LASSO-MLP算法可以构建输入变量数量较少的模型,从而降低了计算复杂度和测量成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Input variables selection criteria for data-driven Soft Sensors design
In this paper the design of a Soft Sensor to estimate the sulphur concentration in a desulphuring unit of a refinery operating in Sicily is described. In particular the problem of the input variables selection is addressed by comparing two different methods. The first method is based on the generalization of the Least Absolute Shrinkage and Selection Operator (LASSO) algorithm to nonlinear models implemented by using Multi-Layer Perceptron (MLP) neural networks. The second one is based on the Lipschitz's quotient analysis. A comparison between the performance and the computational complexity exhibited by the two methods is discussed. The results show that the LASSO-MLP algorithm allows to construct a model with a low number of input variables, thus reducing computational complexity and measuring costs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信