非条款性SAT和ATPG

R. Drechsler, Tommi A. Junttila, I. Niemelä
{"title":"非条款性SAT和ATPG","authors":"R. Drechsler, Tommi A. Junttila, I. Niemelä","doi":"10.3233/978-1-58603-929-5-655","DOIUrl":null,"url":null,"abstract":"When studying the propositional satisfiability problem (SAT), that is, the problem of deciding whether a propositional formula is satisfiable, it is typically assumed that the formula is given in the conjunctive normal form (CNF). Also most software tools for deciding satisfiability of a formula (SAT solvers) assume that their input is in CNF. An important reason for this is that it is simpler to develop efficient data structures and algorithms for CNF than for arbitrary formulas. On the other hand, using CNF makes efficient modeling of an application cumbersome. Therefore one often employs a more general formula representation in modeling and then transforms the formula into CNF for SAT solvers. Transforming a propositional formula in CNF either increases the formula size exponentially or requires the use of auxiliary variables, which can have an negative effect on the performance of a SAT solver in the worst-case. Moreover, by translating to CNF one often loses information about the structure of the original problem. In this chapter we survey methods for solving propositional satisfiability problems when the input formula is not given in CNF but as a general formula or even more compactly as a Boolean circuit. We show how the techniques applied in CNF level Davis-Putnam-Loveland-Logemann algorithm generalize to Boolean circuits and how the problem structure available in the circuit form can be exploited. Then we consider a closely related area of automatic test pattern generation (ATPG) for digital circuits and review classical ATPG algorithms, formulation of ATPG as a SAT problem, and advanced techniques for SAT-based ATPG.","PeriodicalId":250589,"journal":{"name":"Handbook of Satisfiability","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Non-Clausal SAT and ATPG\",\"authors\":\"R. Drechsler, Tommi A. Junttila, I. Niemelä\",\"doi\":\"10.3233/978-1-58603-929-5-655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When studying the propositional satisfiability problem (SAT), that is, the problem of deciding whether a propositional formula is satisfiable, it is typically assumed that the formula is given in the conjunctive normal form (CNF). Also most software tools for deciding satisfiability of a formula (SAT solvers) assume that their input is in CNF. An important reason for this is that it is simpler to develop efficient data structures and algorithms for CNF than for arbitrary formulas. On the other hand, using CNF makes efficient modeling of an application cumbersome. Therefore one often employs a more general formula representation in modeling and then transforms the formula into CNF for SAT solvers. Transforming a propositional formula in CNF either increases the formula size exponentially or requires the use of auxiliary variables, which can have an negative effect on the performance of a SAT solver in the worst-case. Moreover, by translating to CNF one often loses information about the structure of the original problem. In this chapter we survey methods for solving propositional satisfiability problems when the input formula is not given in CNF but as a general formula or even more compactly as a Boolean circuit. We show how the techniques applied in CNF level Davis-Putnam-Loveland-Logemann algorithm generalize to Boolean circuits and how the problem structure available in the circuit form can be exploited. Then we consider a closely related area of automatic test pattern generation (ATPG) for digital circuits and review classical ATPG algorithms, formulation of ATPG as a SAT problem, and advanced techniques for SAT-based ATPG.\",\"PeriodicalId\":250589,\"journal\":{\"name\":\"Handbook of Satisfiability\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Handbook of Satisfiability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/978-1-58603-929-5-655\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Handbook of Satisfiability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/978-1-58603-929-5-655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

在研究命题可满足性问题(SAT),即判断一个命题公式是否可满足的问题时,通常假设该公式以合取范式(CNF)给出。此外,大多数用于确定公式可满足性的软件工具(SAT求解器)假设它们的输入是CNF。这样做的一个重要原因是,为CNF开发有效的数据结构和算法比为任意公式开发更简单。另一方面,使用CNF使应用程序的高效建模变得很麻烦。因此,人们经常在建模中使用更一般的公式表示,然后将公式转换为CNF用于SAT求解。在CNF中变换命题公式,要么以指数方式增加公式大小,要么需要使用辅助变量,这可能会对SAT求解器在最坏情况下的性能产生负面影响。此外,通过转换成CNF,通常会丢失有关原始问题结构的信息。在这一章中,我们研究了当输入公式不是在CNF中给出而是作为一般公式或更紧凑的布尔电路给出时,解决命题可满足性问题的方法。我们展示了CNF级Davis-Putnam-Loveland-Logemann算法中应用的技术如何推广到布尔电路,以及如何利用电路形式中可用的问题结构。然后,我们考虑了与数字电路的自动测试图生成(ATPG)密切相关的领域,并回顾了经典的ATPG算法,将ATPG作为SAT问题的表述,以及基于SAT的ATPG的先进技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-Clausal SAT and ATPG
When studying the propositional satisfiability problem (SAT), that is, the problem of deciding whether a propositional formula is satisfiable, it is typically assumed that the formula is given in the conjunctive normal form (CNF). Also most software tools for deciding satisfiability of a formula (SAT solvers) assume that their input is in CNF. An important reason for this is that it is simpler to develop efficient data structures and algorithms for CNF than for arbitrary formulas. On the other hand, using CNF makes efficient modeling of an application cumbersome. Therefore one often employs a more general formula representation in modeling and then transforms the formula into CNF for SAT solvers. Transforming a propositional formula in CNF either increases the formula size exponentially or requires the use of auxiliary variables, which can have an negative effect on the performance of a SAT solver in the worst-case. Moreover, by translating to CNF one often loses information about the structure of the original problem. In this chapter we survey methods for solving propositional satisfiability problems when the input formula is not given in CNF but as a general formula or even more compactly as a Boolean circuit. We show how the techniques applied in CNF level Davis-Putnam-Loveland-Logemann algorithm generalize to Boolean circuits and how the problem structure available in the circuit form can be exploited. Then we consider a closely related area of automatic test pattern generation (ATPG) for digital circuits and review classical ATPG algorithms, formulation of ATPG as a SAT problem, and advanced techniques for SAT-based ATPG.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信