{"title":"通信延迟和可用性对下垂实现的主频率调节的影响","authors":"F. Wilches-Bernal, Ricky J. Concepcion, R. Byrne","doi":"10.1109/NAPS.2017.8107356","DOIUrl":null,"url":null,"abstract":"This paper proposes a method to modulate the power output of converter interfaced generators (CIGs) according to frequency variations. With the proposed approach, CIGs can successfully engage in the primary frequency regulation of a power system. The approach is a variation on the traditional droop-like proportional controller where the feedback signal is a global frequency measurement instead of a local one. Obtaining the global measurement requires transferring data using communications. This paper analyzes the performance of the proposed approach with respect to communications issues such as latencies and data dropouts. The approach implemented and tested in a simulation environment is compared against a method entirely based on local information. The results show that using global information in droop control provides benefits to the system as it improves its frequency regulation. The results also indicate that the proposed approach is robust to latencies and communication failures.","PeriodicalId":296428,"journal":{"name":"2017 North American Power Symposium (NAPS)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Impact of communication latencies and availability on droop-implemented primary frequency regulation\",\"authors\":\"F. Wilches-Bernal, Ricky J. Concepcion, R. Byrne\",\"doi\":\"10.1109/NAPS.2017.8107356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a method to modulate the power output of converter interfaced generators (CIGs) according to frequency variations. With the proposed approach, CIGs can successfully engage in the primary frequency regulation of a power system. The approach is a variation on the traditional droop-like proportional controller where the feedback signal is a global frequency measurement instead of a local one. Obtaining the global measurement requires transferring data using communications. This paper analyzes the performance of the proposed approach with respect to communications issues such as latencies and data dropouts. The approach implemented and tested in a simulation environment is compared against a method entirely based on local information. The results show that using global information in droop control provides benefits to the system as it improves its frequency regulation. The results also indicate that the proposed approach is robust to latencies and communication failures.\",\"PeriodicalId\":296428,\"journal\":{\"name\":\"2017 North American Power Symposium (NAPS)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 North American Power Symposium (NAPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAPS.2017.8107356\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 North American Power Symposium (NAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAPS.2017.8107356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Impact of communication latencies and availability on droop-implemented primary frequency regulation
This paper proposes a method to modulate the power output of converter interfaced generators (CIGs) according to frequency variations. With the proposed approach, CIGs can successfully engage in the primary frequency regulation of a power system. The approach is a variation on the traditional droop-like proportional controller where the feedback signal is a global frequency measurement instead of a local one. Obtaining the global measurement requires transferring data using communications. This paper analyzes the performance of the proposed approach with respect to communications issues such as latencies and data dropouts. The approach implemented and tested in a simulation environment is compared against a method entirely based on local information. The results show that using global information in droop control provides benefits to the system as it improves its frequency regulation. The results also indicate that the proposed approach is robust to latencies and communication failures.