{"title":"基于Voronoi图和遗传算法的焚烧设施配置与选址多目标优化——以千叶县西北湾区为例","authors":"Taketo Kamikawa, T. Hasuike","doi":"10.1109/IWCIA47330.2019.8955065","DOIUrl":null,"url":null,"abstract":"This research focuses on the two purposes of maximizing the amount of heat generated by incineration and minimizing the collection distance of waste, in determining allocations and locations of general waste incineration facilities as a case study of Chiba northwest bay area. For these purposes, we propose the multi-objective optimization with Voronoi diagram and genetic algorithm (MOVGA). As for the maximization of the amount of generated heat, we predict the amount by using regression equation of multiple linear regression analysis and formulate it as the set partitioning problem (SPP) to maximize the prediction value. As for the minimization of waste collection distances, we formulate it as the multi-Weber problem. To solve these two problems, we use MOVGA, which has the seeds of the Voronoi diagram as a gene. As a result of the survey using data of 2015 year of Chiba northwest bay area, in the case of 3 facilities it was found that the calorific value increased enough to cover the power of 4,205 households (converted to housing complex) per year despite the increase of 3% t-km per year.","PeriodicalId":139434,"journal":{"name":"2019 IEEE 11th International Workshop on Computational Intelligence and Applications (IWCIA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-objective optimization of allocations and locations of incineration facilities with Voronoi diagram and genetic algorithm: Case study of northwest bay area in Chiba prefecture\",\"authors\":\"Taketo Kamikawa, T. Hasuike\",\"doi\":\"10.1109/IWCIA47330.2019.8955065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research focuses on the two purposes of maximizing the amount of heat generated by incineration and minimizing the collection distance of waste, in determining allocations and locations of general waste incineration facilities as a case study of Chiba northwest bay area. For these purposes, we propose the multi-objective optimization with Voronoi diagram and genetic algorithm (MOVGA). As for the maximization of the amount of generated heat, we predict the amount by using regression equation of multiple linear regression analysis and formulate it as the set partitioning problem (SPP) to maximize the prediction value. As for the minimization of waste collection distances, we formulate it as the multi-Weber problem. To solve these two problems, we use MOVGA, which has the seeds of the Voronoi diagram as a gene. As a result of the survey using data of 2015 year of Chiba northwest bay area, in the case of 3 facilities it was found that the calorific value increased enough to cover the power of 4,205 households (converted to housing complex) per year despite the increase of 3% t-km per year.\",\"PeriodicalId\":139434,\"journal\":{\"name\":\"2019 IEEE 11th International Workshop on Computational Intelligence and Applications (IWCIA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 11th International Workshop on Computational Intelligence and Applications (IWCIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWCIA47330.2019.8955065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 11th International Workshop on Computational Intelligence and Applications (IWCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCIA47330.2019.8955065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-objective optimization of allocations and locations of incineration facilities with Voronoi diagram and genetic algorithm: Case study of northwest bay area in Chiba prefecture
This research focuses on the two purposes of maximizing the amount of heat generated by incineration and minimizing the collection distance of waste, in determining allocations and locations of general waste incineration facilities as a case study of Chiba northwest bay area. For these purposes, we propose the multi-objective optimization with Voronoi diagram and genetic algorithm (MOVGA). As for the maximization of the amount of generated heat, we predict the amount by using regression equation of multiple linear regression analysis and formulate it as the set partitioning problem (SPP) to maximize the prediction value. As for the minimization of waste collection distances, we formulate it as the multi-Weber problem. To solve these two problems, we use MOVGA, which has the seeds of the Voronoi diagram as a gene. As a result of the survey using data of 2015 year of Chiba northwest bay area, in the case of 3 facilities it was found that the calorific value increased enough to cover the power of 4,205 households (converted to housing complex) per year despite the increase of 3% t-km per year.