Chaghri -一个fhe友好的分组密码

T. Ashur, M. Mahzoun, Dilara Toprakhisar
{"title":"Chaghri -一个fhe友好的分组密码","authors":"T. Ashur, M. Mahzoun, Dilara Toprakhisar","doi":"10.1145/3548606.3559364","DOIUrl":null,"url":null,"abstract":"The Recent progress in practical applications of secure computation protocols has also attracted attention to the symmetric-key primitives underlying them. Whereas traditional ciphers have evolved to be efficient with respect to certain performance metrics, advanced cryptographic protocols call for a different focus. The so called arithmetic complexity is viewed through the number and layout of non-linear operations in the circuit implemented by the protocol. Symmetric-key algorithms that are optimized with respect to this metric are said to be algebraic ciphers. Previous work targeting ZK and MPC protocols delivered great improvement in the performance of these applications both in lab and in practical use. Interestingly, despite its apparent benefits to privacy-aware cloud computing, algebraic ciphers targeting FHE did not attract similar attention. In this paper we present Chaghri, an FHE-friendly block cipher enabling efficient transciphering in BGV-like schemes. A complete Chaghri circuit can be implemented using only 16 multiplications, 48 Frobenius automorphisms and 32 rotations, all arranged in a depth-32 circuit. Our HElib implementation achieves a throughput of 0.28 seconds-per-bit which is 63% faster thanAES in the same setting.","PeriodicalId":435197,"journal":{"name":"Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Chaghri - A FHE-friendly Block Cipher\",\"authors\":\"T. Ashur, M. Mahzoun, Dilara Toprakhisar\",\"doi\":\"10.1145/3548606.3559364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Recent progress in practical applications of secure computation protocols has also attracted attention to the symmetric-key primitives underlying them. Whereas traditional ciphers have evolved to be efficient with respect to certain performance metrics, advanced cryptographic protocols call for a different focus. The so called arithmetic complexity is viewed through the number and layout of non-linear operations in the circuit implemented by the protocol. Symmetric-key algorithms that are optimized with respect to this metric are said to be algebraic ciphers. Previous work targeting ZK and MPC protocols delivered great improvement in the performance of these applications both in lab and in practical use. Interestingly, despite its apparent benefits to privacy-aware cloud computing, algebraic ciphers targeting FHE did not attract similar attention. In this paper we present Chaghri, an FHE-friendly block cipher enabling efficient transciphering in BGV-like schemes. A complete Chaghri circuit can be implemented using only 16 multiplications, 48 Frobenius automorphisms and 32 rotations, all arranged in a depth-32 circuit. Our HElib implementation achieves a throughput of 0.28 seconds-per-bit which is 63% faster thanAES in the same setting.\",\"PeriodicalId\":435197,\"journal\":{\"name\":\"Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3548606.3559364\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3548606.3559364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

安全计算协议在实际应用中的最新进展也引起了人们对其基础的对称密钥原语的关注。传统密码已经发展到在某些性能指标方面是有效的,而高级加密协议需要不同的关注点。所谓的算术复杂度是通过协议实现的电路中非线性操作的数量和布局来观察的。根据这个度量进行优化的对称密钥算法被称为代数密码。先前针对ZK和MPC协议的工作在实验室和实际使用中都大大提高了这些应用程序的性能。有趣的是,尽管对隐私敏感的云计算有明显的好处,但针对FHE的代数密码并没有引起类似的关注。在本文中,我们提出了Chaghri,一个fhe友好的分组密码,能够在类似bgv的方案中进行有效的加密。一个完整的Chaghri电路只需要16个乘法,48个Frobenius自同构和32个旋转就可以实现,所有这些都安排在一个深度为32的电路中。我们的HElib实现实现了每比特0.28秒的吞吐量,在相同的设置下比aes快63%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chaghri - A FHE-friendly Block Cipher
The Recent progress in practical applications of secure computation protocols has also attracted attention to the symmetric-key primitives underlying them. Whereas traditional ciphers have evolved to be efficient with respect to certain performance metrics, advanced cryptographic protocols call for a different focus. The so called arithmetic complexity is viewed through the number and layout of non-linear operations in the circuit implemented by the protocol. Symmetric-key algorithms that are optimized with respect to this metric are said to be algebraic ciphers. Previous work targeting ZK and MPC protocols delivered great improvement in the performance of these applications both in lab and in practical use. Interestingly, despite its apparent benefits to privacy-aware cloud computing, algebraic ciphers targeting FHE did not attract similar attention. In this paper we present Chaghri, an FHE-friendly block cipher enabling efficient transciphering in BGV-like schemes. A complete Chaghri circuit can be implemented using only 16 multiplications, 48 Frobenius automorphisms and 32 rotations, all arranged in a depth-32 circuit. Our HElib implementation achieves a throughput of 0.28 seconds-per-bit which is 63% faster thanAES in the same setting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信