基于量子计算的物联网SFC嵌入资源优化

Mahzabeen Emu, Salimur Choudhury, K. Salomaa
{"title":"基于量子计算的物联网SFC嵌入资源优化","authors":"Mahzabeen Emu, Salimur Choudhury, K. Salomaa","doi":"10.1109/CAMAD55695.2022.9966892","DOIUrl":null,"url":null,"abstract":"Embedding Service Function Chain (SFC) into the massive and resource-hungry Internet of Things (IoT) substrate graph is a critical optimization research problem. Unfortunately, the classical Integer Linear Programming (ILP) formulation for such problems is usually NP-hard. Thus, this research study presses on the need to go beyond the realms and employ Quantum Annealing (QA) to speed up the computation. To comply, we reformulate the SFC embedding problem into IoT graphs as Quadratic Unconstrained Binary Optimization (QUBO) format and propose a hybrid warm start quantum annealing (WSQA) optimization technique. Simulation results show that our proposed WSQA can improve resource utilization, accelerate computing time, and achieve a better scalability success rate at solving large-scale SFC deployment compared to standalone QA. Further along the line, this research inspires the application of quantum optimization for resource allocation in next-generation networks even with the limited availability of qubits.","PeriodicalId":166029,"journal":{"name":"2022 IEEE 27th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Resource Optimization of SFC Embedding for IoT Networks Using Quantum Computing\",\"authors\":\"Mahzabeen Emu, Salimur Choudhury, K. Salomaa\",\"doi\":\"10.1109/CAMAD55695.2022.9966892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Embedding Service Function Chain (SFC) into the massive and resource-hungry Internet of Things (IoT) substrate graph is a critical optimization research problem. Unfortunately, the classical Integer Linear Programming (ILP) formulation for such problems is usually NP-hard. Thus, this research study presses on the need to go beyond the realms and employ Quantum Annealing (QA) to speed up the computation. To comply, we reformulate the SFC embedding problem into IoT graphs as Quadratic Unconstrained Binary Optimization (QUBO) format and propose a hybrid warm start quantum annealing (WSQA) optimization technique. Simulation results show that our proposed WSQA can improve resource utilization, accelerate computing time, and achieve a better scalability success rate at solving large-scale SFC deployment compared to standalone QA. Further along the line, this research inspires the application of quantum optimization for resource allocation in next-generation networks even with the limited availability of qubits.\",\"PeriodicalId\":166029,\"journal\":{\"name\":\"2022 IEEE 27th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 27th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAMAD55695.2022.9966892\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 27th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMAD55695.2022.9966892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

将业务功能链(SFC)嵌入海量资源密集型的物联网(IoT)基板图中是一个关键的优化研究问题。不幸的是,这类问题的经典整数线性规划(ILP)公式通常是np困难的。因此,本研究迫切需要超越这个领域,采用量子退火(QA)来加快计算速度。为此,我们将SFC嵌入问题重新表述为二次无约束二进制优化(QUBO)格式,并提出了一种混合热启动量子退火(WSQA)优化技术。仿真结果表明,与独立QA相比,我们提出的WSQA可以提高资源利用率,加快计算时间,并在解决大规模SFC部署时获得更高的可扩展性成功率。进一步地,这项研究激发了量子优化在下一代网络中资源分配的应用,即使量子比特的可用性有限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Resource Optimization of SFC Embedding for IoT Networks Using Quantum Computing
Embedding Service Function Chain (SFC) into the massive and resource-hungry Internet of Things (IoT) substrate graph is a critical optimization research problem. Unfortunately, the classical Integer Linear Programming (ILP) formulation for such problems is usually NP-hard. Thus, this research study presses on the need to go beyond the realms and employ Quantum Annealing (QA) to speed up the computation. To comply, we reformulate the SFC embedding problem into IoT graphs as Quadratic Unconstrained Binary Optimization (QUBO) format and propose a hybrid warm start quantum annealing (WSQA) optimization technique. Simulation results show that our proposed WSQA can improve resource utilization, accelerate computing time, and achieve a better scalability success rate at solving large-scale SFC deployment compared to standalone QA. Further along the line, this research inspires the application of quantum optimization for resource allocation in next-generation networks even with the limited availability of qubits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信