人体心脏的机电延迟:一个简单几何的研究

E. Kovacheva, Lukas Baron, O. Dössel, A. Loewe
{"title":"人体心脏的机电延迟:一个简单几何的研究","authors":"E. Kovacheva, Lukas Baron, O. Dössel, A. Loewe","doi":"10.22489/CinC.2018.199","DOIUrl":null,"url":null,"abstract":"The contraction of the heart is a complex process involving the interaction of the passive properties of the tissue and the active tension development, which is elicited by the electrical activation of the cells. In this study, the electro-mechanical delay (EMD) was investigated as well as its dependence on the length of the sarcomeres, which are the contractile units within the cell. EMD was defined as the time offset between the electrical activation of the cell and the time of maximal tension. On a simple bar geometry with unidirectional fibre orientation and a linear local activation time distribution, the EMD proved to be inhomogeneous. The contraction of the early activated regions caused an elongation of the sarcomere (stretch) in the neighbouring regions, which ware electrically activated at a later time. The tension in the stretched region reached twice the value of the cells in the not-stretched, early activated region. Furthermore, the EMD in the early electrically activated region was more than 0.2 s, which was about twice the EMD of the stretched regions. In conclusion, the stretched region developed higher tension within a shorter time interval compared to the early activated region. Future studies will investigate how the inhomogeneous EMD affects cardiac output.","PeriodicalId":215521,"journal":{"name":"2018 Computing in Cardiology Conference (CinC)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Electro-Mechanical Delay in the Human Heart: A Study on a Simple Geometry\",\"authors\":\"E. Kovacheva, Lukas Baron, O. Dössel, A. Loewe\",\"doi\":\"10.22489/CinC.2018.199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The contraction of the heart is a complex process involving the interaction of the passive properties of the tissue and the active tension development, which is elicited by the electrical activation of the cells. In this study, the electro-mechanical delay (EMD) was investigated as well as its dependence on the length of the sarcomeres, which are the contractile units within the cell. EMD was defined as the time offset between the electrical activation of the cell and the time of maximal tension. On a simple bar geometry with unidirectional fibre orientation and a linear local activation time distribution, the EMD proved to be inhomogeneous. The contraction of the early activated regions caused an elongation of the sarcomere (stretch) in the neighbouring regions, which ware electrically activated at a later time. The tension in the stretched region reached twice the value of the cells in the not-stretched, early activated region. Furthermore, the EMD in the early electrically activated region was more than 0.2 s, which was about twice the EMD of the stretched regions. In conclusion, the stretched region developed higher tension within a shorter time interval compared to the early activated region. Future studies will investigate how the inhomogeneous EMD affects cardiac output.\",\"PeriodicalId\":215521,\"journal\":{\"name\":\"2018 Computing in Cardiology Conference (CinC)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Computing in Cardiology Conference (CinC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22489/CinC.2018.199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Computing in Cardiology Conference (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/CinC.2018.199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

心脏的收缩是一个复杂的过程,涉及组织的被动特性和主动张力发展的相互作用,这是由细胞的电激活引起的。在这项研究中,研究了机电延迟(EMD)及其对肌节长度的依赖,肌节是细胞内的收缩单位。EMD定义为细胞电激活与最大张力时间之间的时间偏移。在具有单向纤维取向和线性局部激活时间分布的简单棒材几何结构下,EMD证明是不均匀的。早期激活区域的收缩导致邻近区域的肌节伸长(拉伸),这些区域在晚些时候被电激活。拉伸区域的张力达到未拉伸早期激活区域细胞张力的两倍。此外,早期电激活区EMD大于0.2 s,约为拉伸区EMD的两倍。综上所述,与早期激活区相比,拉伸区在更短的时间间隔内产生更高的张力。未来的研究将探讨不均匀EMD如何影响心输出量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electro-Mechanical Delay in the Human Heart: A Study on a Simple Geometry
The contraction of the heart is a complex process involving the interaction of the passive properties of the tissue and the active tension development, which is elicited by the electrical activation of the cells. In this study, the electro-mechanical delay (EMD) was investigated as well as its dependence on the length of the sarcomeres, which are the contractile units within the cell. EMD was defined as the time offset between the electrical activation of the cell and the time of maximal tension. On a simple bar geometry with unidirectional fibre orientation and a linear local activation time distribution, the EMD proved to be inhomogeneous. The contraction of the early activated regions caused an elongation of the sarcomere (stretch) in the neighbouring regions, which ware electrically activated at a later time. The tension in the stretched region reached twice the value of the cells in the not-stretched, early activated region. Furthermore, the EMD in the early electrically activated region was more than 0.2 s, which was about twice the EMD of the stretched regions. In conclusion, the stretched region developed higher tension within a shorter time interval compared to the early activated region. Future studies will investigate how the inhomogeneous EMD affects cardiac output.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信