CAT(0)立方配合物中的双曲度

A. Genevois
{"title":"CAT(0)立方配合物中的双曲度","authors":"A. Genevois","doi":"10.4171/lem/65-1/2-2","DOIUrl":null,"url":null,"abstract":"This paper is a survey dedicated to the following question: given a group acting on some CAT(0) cube complex, how to exploit this action to determine whether or not the group is Gromov / relatively / acylindrically hyperbolic? As much as possible, the different criteria we mention are illustrated by applications. We also propose a model for universal acylindrical actions of cubulable groups and give a few applications to Morse, stable and hyperbolically embedded subgroups.","PeriodicalId":344085,"journal":{"name":"L’Enseignement Mathématique","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":"{\"title\":\"Hyperbolicities in CAT(0) cube complexes\",\"authors\":\"A. Genevois\",\"doi\":\"10.4171/lem/65-1/2-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is a survey dedicated to the following question: given a group acting on some CAT(0) cube complex, how to exploit this action to determine whether or not the group is Gromov / relatively / acylindrically hyperbolic? As much as possible, the different criteria we mention are illustrated by applications. We also propose a model for universal acylindrical actions of cubulable groups and give a few applications to Morse, stable and hyperbolically embedded subgroups.\",\"PeriodicalId\":344085,\"journal\":{\"name\":\"L’Enseignement Mathématique\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"L’Enseignement Mathématique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/lem/65-1/2-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"L’Enseignement Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/lem/65-1/2-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

摘要

本文致力于以下问题的调查:给定一个作用于CAT(0)立方复合体的群,如何利用这个作用来确定这个群是否是Gromov /相对/非圆柱双曲?我们所提到的不同标准尽可能地通过应用程序来说明。我们还提出了一个可塑群的普遍非圆柱形作用的模型,并给出了一些在莫尔斯、稳定和双曲嵌入子群上的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hyperbolicities in CAT(0) cube complexes
This paper is a survey dedicated to the following question: given a group acting on some CAT(0) cube complex, how to exploit this action to determine whether or not the group is Gromov / relatively / acylindrically hyperbolic? As much as possible, the different criteria we mention are illustrated by applications. We also propose a model for universal acylindrical actions of cubulable groups and give a few applications to Morse, stable and hyperbolically embedded subgroups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信