基于脉冲时序的模式识别与真实世界的视觉刺激

Jun Hu, Huajin Tang, K. Tan
{"title":"基于脉冲时序的模式识别与真实世界的视觉刺激","authors":"Jun Hu, Huajin Tang, K. Tan","doi":"10.1109/CCMB.2013.6609161","DOIUrl":null,"url":null,"abstract":"Pattern recognition has been widely studied in the field of computational intelligence. However, primates outperform existing algorithms in cognitive tasks without any difficulty and most of current methods lack enough biological plausibility. Inspired by recent biological findings, a spike-timing based computational model is described, in which information is represented by temporal codes with explicit firing times rather than firing rates of neurons. Visual stimulation is converted into precisely timed spikes by a retina-like model. Encoded spatiotemporal patterns are learned by a temporal learning algorithm based on spiking-timing-dependent plasticity (STDP). The computational model integrates encoding and learning with a unified neural representation closing the gap between them. We show that our integrated model is capable of recognizing real world stimuli such as images successfully with fast and efficient neural computation.","PeriodicalId":395025,"journal":{"name":"2013 IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and Brain (CCMB)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Spiking-timing based pattern recognition with real-world visual stimuli\",\"authors\":\"Jun Hu, Huajin Tang, K. Tan\",\"doi\":\"10.1109/CCMB.2013.6609161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pattern recognition has been widely studied in the field of computational intelligence. However, primates outperform existing algorithms in cognitive tasks without any difficulty and most of current methods lack enough biological plausibility. Inspired by recent biological findings, a spike-timing based computational model is described, in which information is represented by temporal codes with explicit firing times rather than firing rates of neurons. Visual stimulation is converted into precisely timed spikes by a retina-like model. Encoded spatiotemporal patterns are learned by a temporal learning algorithm based on spiking-timing-dependent plasticity (STDP). The computational model integrates encoding and learning with a unified neural representation closing the gap between them. We show that our integrated model is capable of recognizing real world stimuli such as images successfully with fast and efficient neural computation.\",\"PeriodicalId\":395025,\"journal\":{\"name\":\"2013 IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and Brain (CCMB)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and Brain (CCMB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCMB.2013.6609161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and Brain (CCMB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCMB.2013.6609161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

模式识别在计算智能领域得到了广泛的研究。然而,灵长类动物在认知任务中毫无困难地超越了现有的算法,目前的大多数方法缺乏足够的生物学合理性。受最近生物学发现的启发,本文描述了一种基于脉冲定时的计算模型,其中信息由具有明确放电时间而不是神经元放电速率的时间代码表示。视觉刺激被一个类似视网膜的模型转换成精确定时的尖峰。编码的时空模式通过基于脉冲时间依赖可塑性(STDP)的时间学习算法学习。该计算模型将编码和学习结合在一起,通过统一的神经表示缩小了两者之间的差距。我们证明了我们的集成模型能够通过快速有效的神经计算成功地识别真实世界的刺激,如图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spiking-timing based pattern recognition with real-world visual stimuli
Pattern recognition has been widely studied in the field of computational intelligence. However, primates outperform existing algorithms in cognitive tasks without any difficulty and most of current methods lack enough biological plausibility. Inspired by recent biological findings, a spike-timing based computational model is described, in which information is represented by temporal codes with explicit firing times rather than firing rates of neurons. Visual stimulation is converted into precisely timed spikes by a retina-like model. Encoded spatiotemporal patterns are learned by a temporal learning algorithm based on spiking-timing-dependent plasticity (STDP). The computational model integrates encoding and learning with a unified neural representation closing the gap between them. We show that our integrated model is capable of recognizing real world stimuli such as images successfully with fast and efficient neural computation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信