{"title":"基于蛋白质的生物纳米物联网智能电路用于肾损伤的分子诊断","authors":"H. Nieto-Chaupis","doi":"10.1109/TransAI51903.2021.00020","DOIUrl":null,"url":null,"abstract":"It is shown that the accumulation of albumin proteins around the locations of podocytes is rather similar to a R-C (Resistance-Capacitor) circuit. While the electric shielding is not enough to detain the pass of albumin, more than a diffusion phenomenon, it is a problem that is entirely treated as one belonging to the classical electrodynamics. In this manner it was identified that the diffusion constant plays a role as the electrical parameters. The permanent aggregation of albumin proteins creates a capacitance. Therefore the expended power by the R-C circuit is interpreted as the loss of energy of renal glomerulus with implications on the performance and homeostasis of kidney. Thus, the identification of electric unbalance is translated as a signal of Kidney disease. The fact of having a physics-based scenario demands us to propose schemes inside the framework of the Internet of Bio-Nano Things.","PeriodicalId":426766,"journal":{"name":"2021 Third International Conference on Transdisciplinary AI (TransAI)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proteins-Based Circuits in an Intelligent Internet of Bio-Nano Things Network for Molecular Diagnostic of Renal Damage\",\"authors\":\"H. Nieto-Chaupis\",\"doi\":\"10.1109/TransAI51903.2021.00020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is shown that the accumulation of albumin proteins around the locations of podocytes is rather similar to a R-C (Resistance-Capacitor) circuit. While the electric shielding is not enough to detain the pass of albumin, more than a diffusion phenomenon, it is a problem that is entirely treated as one belonging to the classical electrodynamics. In this manner it was identified that the diffusion constant plays a role as the electrical parameters. The permanent aggregation of albumin proteins creates a capacitance. Therefore the expended power by the R-C circuit is interpreted as the loss of energy of renal glomerulus with implications on the performance and homeostasis of kidney. Thus, the identification of electric unbalance is translated as a signal of Kidney disease. The fact of having a physics-based scenario demands us to propose schemes inside the framework of the Internet of Bio-Nano Things.\",\"PeriodicalId\":426766,\"journal\":{\"name\":\"2021 Third International Conference on Transdisciplinary AI (TransAI)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Third International Conference on Transdisciplinary AI (TransAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TransAI51903.2021.00020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Third International Conference on Transdisciplinary AI (TransAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TransAI51903.2021.00020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Proteins-Based Circuits in an Intelligent Internet of Bio-Nano Things Network for Molecular Diagnostic of Renal Damage
It is shown that the accumulation of albumin proteins around the locations of podocytes is rather similar to a R-C (Resistance-Capacitor) circuit. While the electric shielding is not enough to detain the pass of albumin, more than a diffusion phenomenon, it is a problem that is entirely treated as one belonging to the classical electrodynamics. In this manner it was identified that the diffusion constant plays a role as the electrical parameters. The permanent aggregation of albumin proteins creates a capacitance. Therefore the expended power by the R-C circuit is interpreted as the loss of energy of renal glomerulus with implications on the performance and homeostasis of kidney. Thus, the identification of electric unbalance is translated as a signal of Kidney disease. The fact of having a physics-based scenario demands us to propose schemes inside the framework of the Internet of Bio-Nano Things.