{"title":"带对称Toeplitz矩阵的改进对分特征值法","authors":"Y. Eidelman, I. Haimovici","doi":"10.1553/etna_vol58s316","DOIUrl":null,"url":null,"abstract":". We apply a general bisection eigenvalue algorithm, developed for Hermitian matrices with quasisep- arable representations, to the particular case of real band symmetric Toeplitz matrices. We show that every band symmetric Toeplitz matrix T q with bandwidth q admits the representation T q = A q + H q , where the eigendata of A q are obtained explicitly and the matrix H q has nonzero entries only in two diagonal blocks of size ( q − 1) × ( q − 1) . Based on this representation, one obtains an interlacing property of the eigenvalues of the matrix T q and the known eigenvalues of the matrix A q . This allows us to essentially improve the performance of the bisection eigenvalue algorithm. We also present an algorithm to compute the corresponding eigenvectors.","PeriodicalId":282695,"journal":{"name":"ETNA - Electronic Transactions on Numerical Analysis","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improved bisection eigenvalue method for band symmetric Toeplitz matrices\",\"authors\":\"Y. Eidelman, I. Haimovici\",\"doi\":\"10.1553/etna_vol58s316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We apply a general bisection eigenvalue algorithm, developed for Hermitian matrices with quasisep- arable representations, to the particular case of real band symmetric Toeplitz matrices. We show that every band symmetric Toeplitz matrix T q with bandwidth q admits the representation T q = A q + H q , where the eigendata of A q are obtained explicitly and the matrix H q has nonzero entries only in two diagonal blocks of size ( q − 1) × ( q − 1) . Based on this representation, one obtains an interlacing property of the eigenvalues of the matrix T q and the known eigenvalues of the matrix A q . This allows us to essentially improve the performance of the bisection eigenvalue algorithm. We also present an algorithm to compute the corresponding eigenvectors.\",\"PeriodicalId\":282695,\"journal\":{\"name\":\"ETNA - Electronic Transactions on Numerical Analysis\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ETNA - Electronic Transactions on Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1553/etna_vol58s316\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETNA - Electronic Transactions on Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1553/etna_vol58s316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
。我们将拟可采表示的厄密矩阵的一般二分特征值算法应用于实带对称托普利兹矩阵的特殊情况。我们证明了带宽为q的每一个带对称Toeplitz矩阵tq可以表示为tq = aq + hq,其中aq的特征数据是显式地得到的,并且矩阵hq只在两个大小为(q−1)× (q−1)的对角线块中有非零项。基于这种表示,我们得到了矩阵tq的特征值与矩阵aq的已知特征值的交错性质。这使我们能够从本质上改进二分特征值算法的性能。我们还提出了一种计算相应特征向量的算法。
Improved bisection eigenvalue method for band symmetric Toeplitz matrices
. We apply a general bisection eigenvalue algorithm, developed for Hermitian matrices with quasisep- arable representations, to the particular case of real band symmetric Toeplitz matrices. We show that every band symmetric Toeplitz matrix T q with bandwidth q admits the representation T q = A q + H q , where the eigendata of A q are obtained explicitly and the matrix H q has nonzero entries only in two diagonal blocks of size ( q − 1) × ( q − 1) . Based on this representation, one obtains an interlacing property of the eigenvalues of the matrix T q and the known eigenvalues of the matrix A q . This allows us to essentially improve the performance of the bisection eigenvalue algorithm. We also present an algorithm to compute the corresponding eigenvectors.