基于BiCG-FFT的边缘混合有限元分析非矩形腔背贴片天线

J. Gong, J. Volakis
{"title":"基于BiCG-FFT的边缘混合有限元分析非矩形腔背贴片天线","authors":"J. Gong, J. Volakis","doi":"10.1109/APS.1993.385189","DOIUrl":null,"url":null,"abstract":"To enable the use of the FFT (fast Fourier transform) in connection with the tetrahedral edge-based finite element-boundary integral formulation the authors propose a new approach for combining finite element and boundary integral matrices. This approach makes use of the space transformation concept to map the irregular gridding onto a fictitious regular one. Since the transformation matrix is highly sparse and may be obtained in the preprocessing phase, no additional memory is required aside from that needed for the implementation of the FFT.<<ETX>>","PeriodicalId":138141,"journal":{"name":"Proceedings of IEEE Antennas and Propagation Society International Symposium","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analysis of nonrectangular cavity-backed patch antennas using edge-based hybrid finite element method with BiCG-FFT solver\",\"authors\":\"J. Gong, J. Volakis\",\"doi\":\"10.1109/APS.1993.385189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To enable the use of the FFT (fast Fourier transform) in connection with the tetrahedral edge-based finite element-boundary integral formulation the authors propose a new approach for combining finite element and boundary integral matrices. This approach makes use of the space transformation concept to map the irregular gridding onto a fictitious regular one. Since the transformation matrix is highly sparse and may be obtained in the preprocessing phase, no additional memory is required aside from that needed for the implementation of the FFT.<<ETX>>\",\"PeriodicalId\":138141,\"journal\":{\"name\":\"Proceedings of IEEE Antennas and Propagation Society International Symposium\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IEEE Antennas and Propagation Society International Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APS.1993.385189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE Antennas and Propagation Society International Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APS.1993.385189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了使FFT(快速傅立叶变换)与基于四面体边缘的有限元-边界积分公式相结合,作者提出了一种结合有限元和边界积分矩阵的新方法。该方法利用空间变换的概念将不规则网格映射到虚拟的规则网格上。由于变换矩阵是高度稀疏的,并且可以在预处理阶段获得,因此除了实现FFT所需的内存外,不需要额外的内存。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of nonrectangular cavity-backed patch antennas using edge-based hybrid finite element method with BiCG-FFT solver
To enable the use of the FFT (fast Fourier transform) in connection with the tetrahedral edge-based finite element-boundary integral formulation the authors propose a new approach for combining finite element and boundary integral matrices. This approach makes use of the space transformation concept to map the irregular gridding onto a fictitious regular one. Since the transformation matrix is highly sparse and may be obtained in the preprocessing phase, no additional memory is required aside from that needed for the implementation of the FFT.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信