{"title":"具有最优四阶收敛的potra - ptak型球收敛方法","authors":"I. Argyros, S. George","doi":"10.33993/jnaat501-1247","DOIUrl":null,"url":null,"abstract":"We present a local convergence analysis Potra-Ptak-type method with optimal fourth order of convergence in order to approximate a solution of a nonlinear equation. In earlier studies such as [1], [5]-[28] hypotheses up to the fourth derivative are used. \nIn this paper we use hypotheses up to the first derivative only, so that the applicability of these methods is extended under weaker hypotheses. Moreover the radius of convergence and computable error bounds on the distances involved are also given in this study. Numerical examples are also presented in this study.","PeriodicalId":287022,"journal":{"name":"Journal of Numerical Analysis and Approximation Theory","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ball convergence of Potra-Ptak-type method with optimal fourth order of convergence\",\"authors\":\"I. Argyros, S. George\",\"doi\":\"10.33993/jnaat501-1247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a local convergence analysis Potra-Ptak-type method with optimal fourth order of convergence in order to approximate a solution of a nonlinear equation. In earlier studies such as [1], [5]-[28] hypotheses up to the fourth derivative are used. \\nIn this paper we use hypotheses up to the first derivative only, so that the applicability of these methods is extended under weaker hypotheses. Moreover the radius of convergence and computable error bounds on the distances involved are also given in this study. Numerical examples are also presented in this study.\",\"PeriodicalId\":287022,\"journal\":{\"name\":\"Journal of Numerical Analysis and Approximation Theory\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Numerical Analysis and Approximation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33993/jnaat501-1247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Analysis and Approximation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33993/jnaat501-1247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ball convergence of Potra-Ptak-type method with optimal fourth order of convergence
We present a local convergence analysis Potra-Ptak-type method with optimal fourth order of convergence in order to approximate a solution of a nonlinear equation. In earlier studies such as [1], [5]-[28] hypotheses up to the fourth derivative are used.
In this paper we use hypotheses up to the first derivative only, so that the applicability of these methods is extended under weaker hypotheses. Moreover the radius of convergence and computable error bounds on the distances involved are also given in this study. Numerical examples are also presented in this study.