基于双蚁群算法的计算机网络最优路径确定软件模型

V. Pakhomova, A. O. Opriatnyi
{"title":"基于双蚁群算法的计算机网络最优路径确定软件模型","authors":"V. Pakhomova, A. O. Opriatnyi","doi":"10.15802/stp2021/242046","DOIUrl":null,"url":null,"abstract":"Purpose. At present, the computer networks of the information and telecommunication system (ITS) of railway transport use the OSPF protocol, which does not allow taking into account several metrics when determining the optimal route. Therefore, there is a need to study the possibility of organizing routing in computer networks of rail transport ITS using a two-colonial ant algorithm. Methodology. According to the Two-ACO software model, created in the Python language based on the two-colonial ant algorithm, the optimal route in a computer network was determined. Two-ACO model inputs: computer network parameters (network adjacency matrix, number of routers); parameters of the ant algorithm (number of iterations; number of ants in the colony; number of elite ants; initial pheromone level; evaporation rate; parameter for adjusting the amount of pheromone deposition). Findings. The results of the Two-ACO model are presented in the form of graphs depicting the optimal paths: the criterion of the total delay on the routers (for the first colony of ants) and the number of hops (for the second colony of ants). Originality. According to the created Two-ACO software model for a computer network of 7 routers and 17 channels, a study of the time for determining the optimal path in a computer network by the number of ordinary and elite ants, evaporation rate and deposited pheromone was conducted. It is determined that it is enough to use the number of ants equal to the number of routers and have 2 elite ants in the colony, with 1000 iterations, evaporation rate from 0.2 to 0.7, and pheromone deposition by ants close to one. Practical value. Created Two-ACO software model using two colonies of ants on the following criteria: the total delay on the routers (for the first colony of ants) and the number of hops that make up the route (for the second colony of ants) allows you to parallel determine the optimal routes in a computer network of railway transport. It is estimated that for a computer network of 15 routers and 17 channels, it is sufficient to have 30 agents (two ants on top), the value of the pheromone deposited by the agents is close to one, and the evaporation rate is 0.4.","PeriodicalId":120413,"journal":{"name":"Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Software Model for Determining the Optimal Routes in a Computer Network Based on the Two-Colonial Ant Algorithm\",\"authors\":\"V. Pakhomova, A. O. Opriatnyi\",\"doi\":\"10.15802/stp2021/242046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose. At present, the computer networks of the information and telecommunication system (ITS) of railway transport use the OSPF protocol, which does not allow taking into account several metrics when determining the optimal route. Therefore, there is a need to study the possibility of organizing routing in computer networks of rail transport ITS using a two-colonial ant algorithm. Methodology. According to the Two-ACO software model, created in the Python language based on the two-colonial ant algorithm, the optimal route in a computer network was determined. Two-ACO model inputs: computer network parameters (network adjacency matrix, number of routers); parameters of the ant algorithm (number of iterations; number of ants in the colony; number of elite ants; initial pheromone level; evaporation rate; parameter for adjusting the amount of pheromone deposition). Findings. The results of the Two-ACO model are presented in the form of graphs depicting the optimal paths: the criterion of the total delay on the routers (for the first colony of ants) and the number of hops (for the second colony of ants). Originality. According to the created Two-ACO software model for a computer network of 7 routers and 17 channels, a study of the time for determining the optimal path in a computer network by the number of ordinary and elite ants, evaporation rate and deposited pheromone was conducted. It is determined that it is enough to use the number of ants equal to the number of routers and have 2 elite ants in the colony, with 1000 iterations, evaporation rate from 0.2 to 0.7, and pheromone deposition by ants close to one. Practical value. Created Two-ACO software model using two colonies of ants on the following criteria: the total delay on the routers (for the first colony of ants) and the number of hops that make up the route (for the second colony of ants) allows you to parallel determine the optimal routes in a computer network of railway transport. It is estimated that for a computer network of 15 routers and 17 channels, it is sufficient to have 30 agents (two ants on top), the value of the pheromone deposited by the agents is close to one, and the evaporation rate is 0.4.\",\"PeriodicalId\":120413,\"journal\":{\"name\":\"Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15802/stp2021/242046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15802/stp2021/242046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

目的。目前,铁路运输信息通信系统(ITS)的计算机网络采用OSPF协议,该协议不允许在确定最优路线时考虑多个指标。因此,有必要研究利用双蚁群算法在轨道交通ITS计算机网络中组织路由的可能性。方法。利用Python语言建立的基于双蚁群算法的Two-ACO软件模型,确定计算机网络中的最优路径。双蚁群算法模型输入:计算机网络参数(网络邻接矩阵、路由器数量);蚁群算法参数(迭代次数;蚁群中蚂蚁的数量;精英蚂蚁数量;初始信息素水平;蒸发率;调节信息素沉积量的参数)。发现。Two-ACO模型的结果以图的形式呈现,描绘了最优路径:路由器上的总延迟准则(对于第一群蚂蚁)和跳数(对于第二群蚂蚁)。创意。根据建立的具有7个路由器和17个通道的计算机网络的Two-ACO软件模型,研究了计算机网络中普通蚂蚁和精英蚂蚁数量、蒸发速率和沉积信息素决定最优路径的时间。确定蚁数与路由器数相等,蚁群中有2只精英蚁,迭代1000次,蒸发速率在0.2 ~ 0.7之间,蚂蚁沉积信息素接近1就足够了。实用价值。基于以下标准创建了两个蚁群的two - aco软件模型:路由器上的总延迟(对于第一蚁群)和构成路线的跳数(对于第二蚁群)允许您并行确定铁路运输计算机网络中的最佳路线。据估计,对于一个有15个路由器和17个通道的计算机网络,有30个agent(上面有两只蚂蚁)就足够了,agent沉积的信息素值接近于1,蒸发速率为0.4。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Software Model for Determining the Optimal Routes in a Computer Network Based on the Two-Colonial Ant Algorithm
Purpose. At present, the computer networks of the information and telecommunication system (ITS) of railway transport use the OSPF protocol, which does not allow taking into account several metrics when determining the optimal route. Therefore, there is a need to study the possibility of organizing routing in computer networks of rail transport ITS using a two-colonial ant algorithm. Methodology. According to the Two-ACO software model, created in the Python language based on the two-colonial ant algorithm, the optimal route in a computer network was determined. Two-ACO model inputs: computer network parameters (network adjacency matrix, number of routers); parameters of the ant algorithm (number of iterations; number of ants in the colony; number of elite ants; initial pheromone level; evaporation rate; parameter for adjusting the amount of pheromone deposition). Findings. The results of the Two-ACO model are presented in the form of graphs depicting the optimal paths: the criterion of the total delay on the routers (for the first colony of ants) and the number of hops (for the second colony of ants). Originality. According to the created Two-ACO software model for a computer network of 7 routers and 17 channels, a study of the time for determining the optimal path in a computer network by the number of ordinary and elite ants, evaporation rate and deposited pheromone was conducted. It is determined that it is enough to use the number of ants equal to the number of routers and have 2 elite ants in the colony, with 1000 iterations, evaporation rate from 0.2 to 0.7, and pheromone deposition by ants close to one. Practical value. Created Two-ACO software model using two colonies of ants on the following criteria: the total delay on the routers (for the first colony of ants) and the number of hops that make up the route (for the second colony of ants) allows you to parallel determine the optimal routes in a computer network of railway transport. It is estimated that for a computer network of 15 routers and 17 channels, it is sufficient to have 30 agents (two ants on top), the value of the pheromone deposited by the agents is close to one, and the evaporation rate is 0.4.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信