模块化多通道RFSoC系统扩展与阵列设计

N. Peters, C. Horne, Amin D. Amiri, Piers J. Beasley, M. Ritchie
{"title":"模块化多通道RFSoC系统扩展与阵列设计","authors":"N. Peters, C. Horne, Amin D. Amiri, Piers J. Beasley, M. Ritchie","doi":"10.1109/RadarConf2351548.2023.10149783","DOIUrl":null,"url":null,"abstract":"Radio Frequency (RF) sensors are often designed to operate in a single mode or configuration. Demands coming from operating in future challenging Electromagnetic Environment (EM) conditions require innovative solutions and significant changes from current radar architectures. This paper provides a system level review of a modular multi-function RF sensor solution which allows for a N node solution which can be either used to drive a singular powerful array solution OR deployed as N multistatic RF sensor nodes. Both solutions use a common digital solution which is based on the Xilinx Radio Frequency System on a Chip (RFSoC) technology. An antenna array operating at C-band has been designed for the project, along with daughter-boards which facilitate access to all 8 receive channels from the Xilinx ZCU111 RFSoC development board. A solution to the challenges of synchronising the ADC channels (including across multiple ZCU111 boards) is also presented, with results showing the synchronisation performance.","PeriodicalId":168311,"journal":{"name":"2023 IEEE Radar Conference (RadarConf23)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modular Multi-Channel RFSoC System Expansion and Array Design\",\"authors\":\"N. Peters, C. Horne, Amin D. Amiri, Piers J. Beasley, M. Ritchie\",\"doi\":\"10.1109/RadarConf2351548.2023.10149783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Radio Frequency (RF) sensors are often designed to operate in a single mode or configuration. Demands coming from operating in future challenging Electromagnetic Environment (EM) conditions require innovative solutions and significant changes from current radar architectures. This paper provides a system level review of a modular multi-function RF sensor solution which allows for a N node solution which can be either used to drive a singular powerful array solution OR deployed as N multistatic RF sensor nodes. Both solutions use a common digital solution which is based on the Xilinx Radio Frequency System on a Chip (RFSoC) technology. An antenna array operating at C-band has been designed for the project, along with daughter-boards which facilitate access to all 8 receive channels from the Xilinx ZCU111 RFSoC development board. A solution to the challenges of synchronising the ADC channels (including across multiple ZCU111 boards) is also presented, with results showing the synchronisation performance.\",\"PeriodicalId\":168311,\"journal\":{\"name\":\"2023 IEEE Radar Conference (RadarConf23)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Radar Conference (RadarConf23)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RadarConf2351548.2023.10149783\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Radar Conference (RadarConf23)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RadarConf2351548.2023.10149783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

射频(RF)传感器通常被设计成在单一模式或配置下工作。在未来具有挑战性的电磁环境(EM)条件下工作的需求需要创新的解决方案和对当前雷达架构的重大改变。本文提供了模块化多功能射频传感器解决方案的系统级回顾,该解决方案允许N个节点解决方案,该解决方案可以用于驱动单个强大的阵列解决方案,也可以部署为N个多静态射频传感器节点。这两种解决方案都使用基于赛灵思射频系统芯片(RFSoC)技术的通用数字解决方案。为该项目设计了c波段的天线阵列,以及便于访问来自Xilinx ZCU111 RFSoC开发板的所有8个接收通道的子板。还提出了一种解决同步ADC通道(包括跨多个ZCU111板)挑战的解决方案,结果显示了同步性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modular Multi-Channel RFSoC System Expansion and Array Design
Radio Frequency (RF) sensors are often designed to operate in a single mode or configuration. Demands coming from operating in future challenging Electromagnetic Environment (EM) conditions require innovative solutions and significant changes from current radar architectures. This paper provides a system level review of a modular multi-function RF sensor solution which allows for a N node solution which can be either used to drive a singular powerful array solution OR deployed as N multistatic RF sensor nodes. Both solutions use a common digital solution which is based on the Xilinx Radio Frequency System on a Chip (RFSoC) technology. An antenna array operating at C-band has been designed for the project, along with daughter-boards which facilitate access to all 8 receive channels from the Xilinx ZCU111 RFSoC development board. A solution to the challenges of synchronising the ADC channels (including across multiple ZCU111 boards) is also presented, with results showing the synchronisation performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信