N. Peters, C. Horne, Amin D. Amiri, Piers J. Beasley, M. Ritchie
{"title":"模块化多通道RFSoC系统扩展与阵列设计","authors":"N. Peters, C. Horne, Amin D. Amiri, Piers J. Beasley, M. Ritchie","doi":"10.1109/RadarConf2351548.2023.10149783","DOIUrl":null,"url":null,"abstract":"Radio Frequency (RF) sensors are often designed to operate in a single mode or configuration. Demands coming from operating in future challenging Electromagnetic Environment (EM) conditions require innovative solutions and significant changes from current radar architectures. This paper provides a system level review of a modular multi-function RF sensor solution which allows for a N node solution which can be either used to drive a singular powerful array solution OR deployed as N multistatic RF sensor nodes. Both solutions use a common digital solution which is based on the Xilinx Radio Frequency System on a Chip (RFSoC) technology. An antenna array operating at C-band has been designed for the project, along with daughter-boards which facilitate access to all 8 receive channels from the Xilinx ZCU111 RFSoC development board. A solution to the challenges of synchronising the ADC channels (including across multiple ZCU111 boards) is also presented, with results showing the synchronisation performance.","PeriodicalId":168311,"journal":{"name":"2023 IEEE Radar Conference (RadarConf23)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modular Multi-Channel RFSoC System Expansion and Array Design\",\"authors\":\"N. Peters, C. Horne, Amin D. Amiri, Piers J. Beasley, M. Ritchie\",\"doi\":\"10.1109/RadarConf2351548.2023.10149783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Radio Frequency (RF) sensors are often designed to operate in a single mode or configuration. Demands coming from operating in future challenging Electromagnetic Environment (EM) conditions require innovative solutions and significant changes from current radar architectures. This paper provides a system level review of a modular multi-function RF sensor solution which allows for a N node solution which can be either used to drive a singular powerful array solution OR deployed as N multistatic RF sensor nodes. Both solutions use a common digital solution which is based on the Xilinx Radio Frequency System on a Chip (RFSoC) technology. An antenna array operating at C-band has been designed for the project, along with daughter-boards which facilitate access to all 8 receive channels from the Xilinx ZCU111 RFSoC development board. A solution to the challenges of synchronising the ADC channels (including across multiple ZCU111 boards) is also presented, with results showing the synchronisation performance.\",\"PeriodicalId\":168311,\"journal\":{\"name\":\"2023 IEEE Radar Conference (RadarConf23)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Radar Conference (RadarConf23)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RadarConf2351548.2023.10149783\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Radar Conference (RadarConf23)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RadarConf2351548.2023.10149783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modular Multi-Channel RFSoC System Expansion and Array Design
Radio Frequency (RF) sensors are often designed to operate in a single mode or configuration. Demands coming from operating in future challenging Electromagnetic Environment (EM) conditions require innovative solutions and significant changes from current radar architectures. This paper provides a system level review of a modular multi-function RF sensor solution which allows for a N node solution which can be either used to drive a singular powerful array solution OR deployed as N multistatic RF sensor nodes. Both solutions use a common digital solution which is based on the Xilinx Radio Frequency System on a Chip (RFSoC) technology. An antenna array operating at C-band has been designed for the project, along with daughter-boards which facilitate access to all 8 receive channels from the Xilinx ZCU111 RFSoC development board. A solution to the challenges of synchronising the ADC channels (including across multiple ZCU111 boards) is also presented, with results showing the synchronisation performance.