基于稀疏表示的分类改进单视图步态识别

Sonia Das, Upanedra Kumar Sahoo, S. Meher
{"title":"基于稀疏表示的分类改进单视图步态识别","authors":"Sonia Das, Upanedra Kumar Sahoo, S. Meher","doi":"10.1109/TECHSYM.2016.7872703","DOIUrl":null,"url":null,"abstract":"This paper explores a better way of recognition using sparse based representation, by taking into account a number of covariates that affect single view based gait. Nevertheless, the conventional methods couldn't handle covariates effectively. Our propose framework comprises a dictionary, which describes five segments of a subject over a gait period. The feature vectors are educed from ellipse based parameters from each segments and fused to form a covariance matrix. Each matrix is used as dictionary atom and solved using — l1 — minimization. The linear representations of sparse codes of different atoms are used for recognition. The proposed method is compared with that of state-of-the-art methods","PeriodicalId":403350,"journal":{"name":"2016 IEEE Students’ Technology Symposium (TechSym)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Improving single view gait recognition using sparse representation based classification\",\"authors\":\"Sonia Das, Upanedra Kumar Sahoo, S. Meher\",\"doi\":\"10.1109/TECHSYM.2016.7872703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores a better way of recognition using sparse based representation, by taking into account a number of covariates that affect single view based gait. Nevertheless, the conventional methods couldn't handle covariates effectively. Our propose framework comprises a dictionary, which describes five segments of a subject over a gait period. The feature vectors are educed from ellipse based parameters from each segments and fused to form a covariance matrix. Each matrix is used as dictionary atom and solved using — l1 — minimization. The linear representations of sparse codes of different atoms are used for recognition. The proposed method is compared with that of state-of-the-art methods\",\"PeriodicalId\":403350,\"journal\":{\"name\":\"2016 IEEE Students’ Technology Symposium (TechSym)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Students’ Technology Symposium (TechSym)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TECHSYM.2016.7872703\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Students’ Technology Symposium (TechSym)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TECHSYM.2016.7872703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文通过考虑影响单视图步态的协变量,探索了一种更好的基于稀疏表示的识别方法。然而,传统方法不能有效地处理协变量。我们提出的框架包括一个字典,它描述了一个步态周期内受试者的五个部分。从每个片段的椭圆参数中导出特征向量,并融合形成协方差矩阵。每个矩阵用作字典原子,并使用- l1最小化方法求解。采用不同原子稀疏码的线性表示进行识别。并将该方法与现有方法进行了比较
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving single view gait recognition using sparse representation based classification
This paper explores a better way of recognition using sparse based representation, by taking into account a number of covariates that affect single view based gait. Nevertheless, the conventional methods couldn't handle covariates effectively. Our propose framework comprises a dictionary, which describes five segments of a subject over a gait period. The feature vectors are educed from ellipse based parameters from each segments and fused to form a covariance matrix. Each matrix is used as dictionary atom and solved using — l1 — minimization. The linear representations of sparse codes of different atoms are used for recognition. The proposed method is compared with that of state-of-the-art methods
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信