{"title":"非定常三维流动选择可视化实例研究","authors":"D. Bauer, R. Peikert, Mie Sato, M. Sick","doi":"10.1109/VISUAL.2002.1183821","DOIUrl":null,"url":null,"abstract":"In this case study, we explore techniques for the purpose of visualizing isolated flow structures in time-dependent data. Our primary industrial application is the visualization of the vortex rope, a rotating helical structure which builds up in the draft tube of a water turbine. The vortex rope can be characterized by high values of normalized helicity, which is a scalar field derived from the given CFD velocity data. In two related applications, the goal is to visualize the cavitation regions near the runner blades of a Kaplan turbine and a water pump, respectively. Again, the flow structure of interest can be defined by a scalar field, namely by low pressure values. We propose a particle seeding scheme based on quasi-random numbers, which minimizes visual artifacts such as clusters or patterns. By constraining the visualization to a region of interest, occlusion problems are reduced and storage efficiency is gained.","PeriodicalId":196064,"journal":{"name":"IEEE Visualization, 2002. VIS 2002.","volume":"12 10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"A case study in selective visualization of unsteady 3D flow\",\"authors\":\"D. Bauer, R. Peikert, Mie Sato, M. Sick\",\"doi\":\"10.1109/VISUAL.2002.1183821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this case study, we explore techniques for the purpose of visualizing isolated flow structures in time-dependent data. Our primary industrial application is the visualization of the vortex rope, a rotating helical structure which builds up in the draft tube of a water turbine. The vortex rope can be characterized by high values of normalized helicity, which is a scalar field derived from the given CFD velocity data. In two related applications, the goal is to visualize the cavitation regions near the runner blades of a Kaplan turbine and a water pump, respectively. Again, the flow structure of interest can be defined by a scalar field, namely by low pressure values. We propose a particle seeding scheme based on quasi-random numbers, which minimizes visual artifacts such as clusters or patterns. By constraining the visualization to a region of interest, occlusion problems are reduced and storage efficiency is gained.\",\"PeriodicalId\":196064,\"journal\":{\"name\":\"IEEE Visualization, 2002. VIS 2002.\",\"volume\":\"12 10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Visualization, 2002. VIS 2002.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VISUAL.2002.1183821\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Visualization, 2002. VIS 2002.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VISUAL.2002.1183821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A case study in selective visualization of unsteady 3D flow
In this case study, we explore techniques for the purpose of visualizing isolated flow structures in time-dependent data. Our primary industrial application is the visualization of the vortex rope, a rotating helical structure which builds up in the draft tube of a water turbine. The vortex rope can be characterized by high values of normalized helicity, which is a scalar field derived from the given CFD velocity data. In two related applications, the goal is to visualize the cavitation regions near the runner blades of a Kaplan turbine and a water pump, respectively. Again, the flow structure of interest can be defined by a scalar field, namely by low pressure values. We propose a particle seeding scheme based on quasi-random numbers, which minimizes visual artifacts such as clusters or patterns. By constraining the visualization to a region of interest, occlusion problems are reduced and storage efficiency is gained.