基于q -学习算法的离散时间最优控制方案

Qinglai Wei, Derong Liu, Ruizhuo Song
{"title":"基于q -学习算法的离散时间最优控制方案","authors":"Qinglai Wei, Derong Liu, Ruizhuo Song","doi":"10.1109/ICICIP.2016.7885888","DOIUrl":null,"url":null,"abstract":"This paper is concerned with optimal control problems of discrete-time nonlinear systems via a novel Q-learning algorithm. In the newly developed Q-learning algorithm, the iterative Q function in each iteration is required to update on the whole state and control spaces, instead of being updated by a single state and control pair. A new convergence criterion of the corresponding Q-learning algorithm is presented, where the traditional constraints for the learning rates of Q-learning algorithms is relaxed. Finally, simulation results are provided to exemplify the good performance of the developed algorithm.","PeriodicalId":226381,"journal":{"name":"2016 Seventh International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Discrete-time optimal control scheme based on Q-learning algorithm\",\"authors\":\"Qinglai Wei, Derong Liu, Ruizhuo Song\",\"doi\":\"10.1109/ICICIP.2016.7885888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with optimal control problems of discrete-time nonlinear systems via a novel Q-learning algorithm. In the newly developed Q-learning algorithm, the iterative Q function in each iteration is required to update on the whole state and control spaces, instead of being updated by a single state and control pair. A new convergence criterion of the corresponding Q-learning algorithm is presented, where the traditional constraints for the learning rates of Q-learning algorithms is relaxed. Finally, simulation results are provided to exemplify the good performance of the developed algorithm.\",\"PeriodicalId\":226381,\"journal\":{\"name\":\"2016 Seventh International Conference on Intelligent Control and Information Processing (ICICIP)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Seventh International Conference on Intelligent Control and Information Processing (ICICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICIP.2016.7885888\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Seventh International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP.2016.7885888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文利用一种新的q -学习算法研究离散非线性系统的最优控制问题。在新开发的Q-learning算法中,每次迭代中的迭代Q函数需要在整个状态空间和控制空间上更新,而不是由单个状态和控制对更新。提出了相应的q -学习算法的一个新的收敛准则,放宽了传统的q -学习算法的学习率约束。最后给出了仿真结果,验证了该算法的良好性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discrete-time optimal control scheme based on Q-learning algorithm
This paper is concerned with optimal control problems of discrete-time nonlinear systems via a novel Q-learning algorithm. In the newly developed Q-learning algorithm, the iterative Q function in each iteration is required to update on the whole state and control spaces, instead of being updated by a single state and control pair. A new convergence criterion of the corresponding Q-learning algorithm is presented, where the traditional constraints for the learning rates of Q-learning algorithms is relaxed. Finally, simulation results are provided to exemplify the good performance of the developed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信