{"title":"FFT阵列的重构:一个流驱动的方法","authors":"A. Antola, N. Scarabottolo","doi":"10.1109/ASAP.1990.145476","DOIUrl":null,"url":null,"abstract":"A new reconfiguration algorithm for defect and fault tolerance in fast Fourier transform (FFT) two-dimensional arrays is presented. The reconfiguration scheme is based on the data flow of the algorithm to minimize the overhead due to the re-routing of information in the reconfigured array. Evaluation of the effectiveness of this approach shows a significant increase in system robustness with respect to other, non-dedicated reconfiguration approaches. Moreover, the possibility of choosing between two reconfiguration algorithms characterized by different complexities and efficiencies results in both an optimal, host-driven reconfiguration (particularly suited for end-of-production yield enhancement) and a fast, self-performed reconfiguration (suited for on-line reliability enhancement).<<ETX>>","PeriodicalId":438078,"journal":{"name":"[1990] Proceedings of the International Conference on Application Specific Array Processors","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Reconfiguration of FFT arrays: a flow-driven approach\",\"authors\":\"A. Antola, N. Scarabottolo\",\"doi\":\"10.1109/ASAP.1990.145476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new reconfiguration algorithm for defect and fault tolerance in fast Fourier transform (FFT) two-dimensional arrays is presented. The reconfiguration scheme is based on the data flow of the algorithm to minimize the overhead due to the re-routing of information in the reconfigured array. Evaluation of the effectiveness of this approach shows a significant increase in system robustness with respect to other, non-dedicated reconfiguration approaches. Moreover, the possibility of choosing between two reconfiguration algorithms characterized by different complexities and efficiencies results in both an optimal, host-driven reconfiguration (particularly suited for end-of-production yield enhancement) and a fast, self-performed reconfiguration (suited for on-line reliability enhancement).<<ETX>>\",\"PeriodicalId\":438078,\"journal\":{\"name\":\"[1990] Proceedings of the International Conference on Application Specific Array Processors\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1990] Proceedings of the International Conference on Application Specific Array Processors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASAP.1990.145476\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1990] Proceedings of the International Conference on Application Specific Array Processors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASAP.1990.145476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reconfiguration of FFT arrays: a flow-driven approach
A new reconfiguration algorithm for defect and fault tolerance in fast Fourier transform (FFT) two-dimensional arrays is presented. The reconfiguration scheme is based on the data flow of the algorithm to minimize the overhead due to the re-routing of information in the reconfigured array. Evaluation of the effectiveness of this approach shows a significant increase in system robustness with respect to other, non-dedicated reconfiguration approaches. Moreover, the possibility of choosing between two reconfiguration algorithms characterized by different complexities and efficiencies results in both an optimal, host-driven reconfiguration (particularly suited for end-of-production yield enhancement) and a fast, self-performed reconfiguration (suited for on-line reliability enhancement).<>