一种有效的基于补丁的纹理自动合成参数估计方法

Jakrapong Narkdej, P. Kanongchaiyos
{"title":"一种有效的基于补丁的纹理自动合成参数估计方法","authors":"Jakrapong Narkdej, P. Kanongchaiyos","doi":"10.1145/1503454.1503471","DOIUrl":null,"url":null,"abstract":"Patch-based texture synthesis is a method for synthesizing bigger texture from smaller sample patch by patch. This method requires two user defined parameters including patch size and boundary zone which cannot directly evaluated. To obtain optimal parameters, we can analyze texture using Markov Random Field, but it is too expensive to be used with large textures. This paper introduces more efficient method to find optimal parameters. Firstly, we use graph-based image segmentation to extract segments from the sample. Secondly, we choose main feature to be preserved in result. Finally, we calculate optimal parameters based on size and repetition of the segments. Our technique reduces time used to determine the parameters compared to former method and can be used with wide range of textures.","PeriodicalId":325699,"journal":{"name":"International Conference on Computer Graphics, Virtual Reality, Visualisation and Interaction in Africa","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An efficient parameters estimation method for automatic patch-based texture synthesis\",\"authors\":\"Jakrapong Narkdej, P. Kanongchaiyos\",\"doi\":\"10.1145/1503454.1503471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Patch-based texture synthesis is a method for synthesizing bigger texture from smaller sample patch by patch. This method requires two user defined parameters including patch size and boundary zone which cannot directly evaluated. To obtain optimal parameters, we can analyze texture using Markov Random Field, but it is too expensive to be used with large textures. This paper introduces more efficient method to find optimal parameters. Firstly, we use graph-based image segmentation to extract segments from the sample. Secondly, we choose main feature to be preserved in result. Finally, we calculate optimal parameters based on size and repetition of the segments. Our technique reduces time used to determine the parameters compared to former method and can be used with wide range of textures.\",\"PeriodicalId\":325699,\"journal\":{\"name\":\"International Conference on Computer Graphics, Virtual Reality, Visualisation and Interaction in Africa\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Computer Graphics, Virtual Reality, Visualisation and Interaction in Africa\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1503454.1503471\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computer Graphics, Virtual Reality, Visualisation and Interaction in Africa","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1503454.1503471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

基于patch的纹理合成是一种将较小的样本逐块合成较大纹理的方法。该方法需要用户自定义两个参数,包括补丁大小和边界区域,这些参数不能直接计算。为了获得最优参数,我们可以使用马尔可夫随机场对纹理进行分析,但对于大型纹理来说,成本太高。本文介绍了一种更有效的求最优参数的方法。首先,我们使用基于图的图像分割从样本中提取片段。其次,选择结果中需要保留的主要特征。最后,我们根据片段的大小和重复次数计算出最优参数。与以前的方法相比,我们的技术减少了确定参数的时间,并且可以用于广泛的纹理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An efficient parameters estimation method for automatic patch-based texture synthesis
Patch-based texture synthesis is a method for synthesizing bigger texture from smaller sample patch by patch. This method requires two user defined parameters including patch size and boundary zone which cannot directly evaluated. To obtain optimal parameters, we can analyze texture using Markov Random Field, but it is too expensive to be used with large textures. This paper introduces more efficient method to find optimal parameters. Firstly, we use graph-based image segmentation to extract segments from the sample. Secondly, we choose main feature to be preserved in result. Finally, we calculate optimal parameters based on size and repetition of the segments. Our technique reduces time used to determine the parameters compared to former method and can be used with wide range of textures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信