利用动态多回合语境识别患者-治疗师短信交流中的扭曲思维

K. Lybarger, J. Tauscher, Xiruo Ding, Dror Ben-Zeev, T. Cohen
{"title":"利用动态多回合语境识别患者-治疗师短信交流中的扭曲思维","authors":"K. Lybarger, J. Tauscher, Xiruo Ding, Dror Ben-Zeev, T. Cohen","doi":"10.18653/v1/2022.clpsych-1.11","DOIUrl":null,"url":null,"abstract":"There is growing evidence that mobile text message exchanges between patients and therapists can augment traditional cognitive behavioral therapy. The automatic characterization of patient thinking patterns in this asynchronous text communication may guide treatment and assist in therapist training. In this work, we automatically identify distorted thinking in text-based patient-therapist exchanges, investigating the role of conversation history (context) in distortion prediction. We identify six unique types of cognitive distortions and utilize BERT-based architectures to represent text messages within the context of the conversation. We propose two approaches for leveraging dynamic conversation context in model training. By representing the text messages within the context of the broader patient-therapist conversation, the models better emulate the therapist’s task of recognizing distorted thoughts. This multi-turn classification approach also leverages the clustering of distorted thinking in the conversation timeline. We demonstrate that including conversation context, including the proposed dynamic context methods, improves distortion prediction performance. The proposed architectures and conversation encoding approaches achieve performance comparable to inter-rater agreement. The presence of any distorted thinking is identified with relatively high performance at 0.73 F1, significantly outperforming the best context-agnostic models (0.68 F1).","PeriodicalId":107109,"journal":{"name":"Proceedings of the Eighth Workshop on Computational Linguistics and Clinical Psychology","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Identifying Distorted Thinking in Patient-Therapist Text Message Exchanges by Leveraging Dynamic Multi-Turn Context\",\"authors\":\"K. Lybarger, J. Tauscher, Xiruo Ding, Dror Ben-Zeev, T. Cohen\",\"doi\":\"10.18653/v1/2022.clpsych-1.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is growing evidence that mobile text message exchanges between patients and therapists can augment traditional cognitive behavioral therapy. The automatic characterization of patient thinking patterns in this asynchronous text communication may guide treatment and assist in therapist training. In this work, we automatically identify distorted thinking in text-based patient-therapist exchanges, investigating the role of conversation history (context) in distortion prediction. We identify six unique types of cognitive distortions and utilize BERT-based architectures to represent text messages within the context of the conversation. We propose two approaches for leveraging dynamic conversation context in model training. By representing the text messages within the context of the broader patient-therapist conversation, the models better emulate the therapist’s task of recognizing distorted thoughts. This multi-turn classification approach also leverages the clustering of distorted thinking in the conversation timeline. We demonstrate that including conversation context, including the proposed dynamic context methods, improves distortion prediction performance. The proposed architectures and conversation encoding approaches achieve performance comparable to inter-rater agreement. The presence of any distorted thinking is identified with relatively high performance at 0.73 F1, significantly outperforming the best context-agnostic models (0.68 F1).\",\"PeriodicalId\":107109,\"journal\":{\"name\":\"Proceedings of the Eighth Workshop on Computational Linguistics and Clinical Psychology\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Eighth Workshop on Computational Linguistics and Clinical Psychology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2022.clpsych-1.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eighth Workshop on Computational Linguistics and Clinical Psychology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.clpsych-1.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

越来越多的证据表明,患者和治疗师之间的手机短信交流可以增强传统的认知行为疗法。在这种异步文本交流中,患者思维模式的自动表征可以指导治疗并协助治疗师培训。在这项工作中,我们自动识别基于文本的患者-治疗师交流中的扭曲思维,研究对话历史(上下文)在扭曲预测中的作用。我们确定了六种独特的认知扭曲类型,并利用基于bert的架构来表示对话上下文中的文本信息。我们提出了在模型训练中利用动态会话上下文的两种方法。通过在更广泛的患者-治疗师对话的背景下表示文本信息,这些模型更好地模仿了治疗师识别扭曲思想的任务。这种多回合分类方法还利用了对话时间线中扭曲思维的聚类。我们证明,包括会话上下文,包括提出的动态上下文方法,提高了失真预测性能。所提出的体系结构和会话编码方法实现的性能可与码间协议相媲美。任何扭曲思维的存在都具有相对较高的性能(0.73 F1),显著优于最佳上下文不可知模型(0.68 F1)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identifying Distorted Thinking in Patient-Therapist Text Message Exchanges by Leveraging Dynamic Multi-Turn Context
There is growing evidence that mobile text message exchanges between patients and therapists can augment traditional cognitive behavioral therapy. The automatic characterization of patient thinking patterns in this asynchronous text communication may guide treatment and assist in therapist training. In this work, we automatically identify distorted thinking in text-based patient-therapist exchanges, investigating the role of conversation history (context) in distortion prediction. We identify six unique types of cognitive distortions and utilize BERT-based architectures to represent text messages within the context of the conversation. We propose two approaches for leveraging dynamic conversation context in model training. By representing the text messages within the context of the broader patient-therapist conversation, the models better emulate the therapist’s task of recognizing distorted thoughts. This multi-turn classification approach also leverages the clustering of distorted thinking in the conversation timeline. We demonstrate that including conversation context, including the proposed dynamic context methods, improves distortion prediction performance. The proposed architectures and conversation encoding approaches achieve performance comparable to inter-rater agreement. The presence of any distorted thinking is identified with relatively high performance at 0.73 F1, significantly outperforming the best context-agnostic models (0.68 F1).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信