利用小波进行局域带宽自适应的谱密度估计

P. Moulin
{"title":"利用小波进行局域带宽自适应的谱密度估计","authors":"P. Moulin","doi":"10.1109/ISIT.1994.394931","DOIUrl":null,"url":null,"abstract":"We consider the problem of estimating the spectral density of a discrete-time, wide-sense stationary, real, Gaussian random process from a set of 2N observations. Consistent estimates may be obtained by suitable processing of the empirical spectral density estimates (periodogram). Wavelet techniques can be used for combining information about the spectral density at different resolutions. We present an estimation technique based on the following two paradigms: large-sample model for the data; and inference on the wavelet coefficients of the log spectral density.<<ETX>>","PeriodicalId":331390,"journal":{"name":"Proceedings of 1994 IEEE International Symposium on Information Theory","volume":"58 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The use of wavelets for spectral density estimation with local bandwidth adaptation\",\"authors\":\"P. Moulin\",\"doi\":\"10.1109/ISIT.1994.394931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of estimating the spectral density of a discrete-time, wide-sense stationary, real, Gaussian random process from a set of 2N observations. Consistent estimates may be obtained by suitable processing of the empirical spectral density estimates (periodogram). Wavelet techniques can be used for combining information about the spectral density at different resolutions. We present an estimation technique based on the following two paradigms: large-sample model for the data; and inference on the wavelet coefficients of the log spectral density.<<ETX>>\",\"PeriodicalId\":331390,\"journal\":{\"name\":\"Proceedings of 1994 IEEE International Symposium on Information Theory\",\"volume\":\"58 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 IEEE International Symposium on Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.1994.394931\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.1994.394931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑从一组2N个观测值估计离散时间、广义平稳、实高斯随机过程的谱密度问题。通过对经验谱密度估计(周期图)进行适当的处理,可以得到一致的估计。小波技术可用于组合不同分辨率的谱密度信息。我们提出了一种基于以下两种范式的估计技术:数据的大样本模型;并对对数谱密度的小波系数进行了推断
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The use of wavelets for spectral density estimation with local bandwidth adaptation
We consider the problem of estimating the spectral density of a discrete-time, wide-sense stationary, real, Gaussian random process from a set of 2N observations. Consistent estimates may be obtained by suitable processing of the empirical spectral density estimates (periodogram). Wavelet techniques can be used for combining information about the spectral density at different resolutions. We present an estimation technique based on the following two paradigms: large-sample model for the data; and inference on the wavelet coefficients of the log spectral density.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信