格林函数与格劳伯曼度可整除性

M. Geck
{"title":"格林函数与格劳伯曼度可整除性","authors":"M. Geck","doi":"10.4007/annals.2020.192.1.4","DOIUrl":null,"url":null,"abstract":"The Glauberman correspondence is a fundamental bijection in the character theory of finite groups. In 1994, Hartley and Turull established a degree-divisibility property for characters related by that correspondence, subject to a congruence condition which should hold for the Green functions of finite groups of Lie type, as defined by Deligne and Lusztig. Here, we present a general argument for completing the proof of that congruence condition. Consequently, the degree-divisibility property holds in complete generality.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"50 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Green functions and Glauberman degree-divisibility\",\"authors\":\"M. Geck\",\"doi\":\"10.4007/annals.2020.192.1.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Glauberman correspondence is a fundamental bijection in the character theory of finite groups. In 1994, Hartley and Turull established a degree-divisibility property for characters related by that correspondence, subject to a congruence condition which should hold for the Green functions of finite groups of Lie type, as defined by Deligne and Lusztig. Here, we present a general argument for completing the proof of that congruence condition. Consequently, the degree-divisibility property holds in complete generality.\",\"PeriodicalId\":275006,\"journal\":{\"name\":\"arXiv: Representation Theory\",\"volume\":\"50 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4007/annals.2020.192.1.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4007/annals.2020.192.1.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

格劳伯曼对应是有限群特征理论中的一个基本对射。1994年,Hartley和Turull建立了与该对应关系相关的字符的度可整除性质,该性质受同余条件的约束,该条件适用于由Deligne和Lusztig定义的Lie型有限群的Green函数。在这里,我们给出了完成同余条件证明的一般论证。因此,次可整除性质具有完全的普遍性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Green functions and Glauberman degree-divisibility
The Glauberman correspondence is a fundamental bijection in the character theory of finite groups. In 1994, Hartley and Turull established a degree-divisibility property for characters related by that correspondence, subject to a congruence condition which should hold for the Green functions of finite groups of Lie type, as defined by Deligne and Lusztig. Here, we present a general argument for completing the proof of that congruence condition. Consequently, the degree-divisibility property holds in complete generality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信