{"title":"用于填充关系数据库的HTML表的端到端转换","authors":"G. Nagy, S. Seth, D. Embley","doi":"10.1109/DAS.2014.9","DOIUrl":null,"url":null,"abstract":"Automating the conversion of human-readable HTML tables into machine-readable relational tables will enable end-user query processing of the millions of data tables found on the web. Theoretically sound and experimentally successful methods for index-based segmentation, extraction of category hierarchies, and construction of a canonical table suitable for direct input to a relational database are demonstrated on 200 heterogeneous web tables. The methods are scalable: the program generates the 198 Access compatible CSV files in ~0.1s per table (two tables could not be indexed).","PeriodicalId":220495,"journal":{"name":"2014 11th IAPR International Workshop on Document Analysis Systems","volume":"198 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"End-to-End Conversion of HTML Tables for Populating a Relational Database\",\"authors\":\"G. Nagy, S. Seth, D. Embley\",\"doi\":\"10.1109/DAS.2014.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automating the conversion of human-readable HTML tables into machine-readable relational tables will enable end-user query processing of the millions of data tables found on the web. Theoretically sound and experimentally successful methods for index-based segmentation, extraction of category hierarchies, and construction of a canonical table suitable for direct input to a relational database are demonstrated on 200 heterogeneous web tables. The methods are scalable: the program generates the 198 Access compatible CSV files in ~0.1s per table (two tables could not be indexed).\",\"PeriodicalId\":220495,\"journal\":{\"name\":\"2014 11th IAPR International Workshop on Document Analysis Systems\",\"volume\":\"198 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 11th IAPR International Workshop on Document Analysis Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DAS.2014.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 11th IAPR International Workshop on Document Analysis Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAS.2014.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
End-to-End Conversion of HTML Tables for Populating a Relational Database
Automating the conversion of human-readable HTML tables into machine-readable relational tables will enable end-user query processing of the millions of data tables found on the web. Theoretically sound and experimentally successful methods for index-based segmentation, extraction of category hierarchies, and construction of a canonical table suitable for direct input to a relational database are demonstrated on 200 heterogeneous web tables. The methods are scalable: the program generates the 198 Access compatible CSV files in ~0.1s per table (two tables could not be indexed).