使用高性能查询驱动可视化检测分布式扫描

Kurt Stockinger, E. W. Bethel, S. Campbell, E. Dart, K. Wu
{"title":"使用高性能查询驱动可视化检测分布式扫描","authors":"Kurt Stockinger, E. W. Bethel, S. Campbell, E. Dart, K. Wu","doi":"10.1145/1188455.1188542","DOIUrl":null,"url":null,"abstract":"Modern forensic analytics applications, like network traffic analysis, perform high-performance hypothesis testing, knowledge discovery and data mining on very large datasets. One essential strategy to reduce the time required for these operations is to select only the most relevant data records for a given computation. In this paper, we present a set of parallel algorithms that demonstrate how an efficient selection mechanism - bitmap indexing - significantly speeds up a common analysis task, namely, computing conditional histogram on very large datasets. We present a thorough study of the performance characteristics of the parallel conditional histogram algorithms. As a case study, we compute conditional histograms for detecting distributed scans hidden in a dataset consisting of approximately 2.5 billion network connection records. We show that these conditional histograms can be computed on interactive time scale (i.e., in seconds). We also show how to progressively modify the selection criteria to narrow the analysis and find the sources of the distributed scans","PeriodicalId":333909,"journal":{"name":"ACM/IEEE SC 2006 Conference (SC'06)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":"{\"title\":\"Detecting Distributed Scans Using High-Performance Query-Driven Visualization\",\"authors\":\"Kurt Stockinger, E. W. Bethel, S. Campbell, E. Dart, K. Wu\",\"doi\":\"10.1145/1188455.1188542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern forensic analytics applications, like network traffic analysis, perform high-performance hypothesis testing, knowledge discovery and data mining on very large datasets. One essential strategy to reduce the time required for these operations is to select only the most relevant data records for a given computation. In this paper, we present a set of parallel algorithms that demonstrate how an efficient selection mechanism - bitmap indexing - significantly speeds up a common analysis task, namely, computing conditional histogram on very large datasets. We present a thorough study of the performance characteristics of the parallel conditional histogram algorithms. As a case study, we compute conditional histograms for detecting distributed scans hidden in a dataset consisting of approximately 2.5 billion network connection records. We show that these conditional histograms can be computed on interactive time scale (i.e., in seconds). We also show how to progressively modify the selection criteria to narrow the analysis and find the sources of the distributed scans\",\"PeriodicalId\":333909,\"journal\":{\"name\":\"ACM/IEEE SC 2006 Conference (SC'06)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM/IEEE SC 2006 Conference (SC'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1188455.1188542\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM/IEEE SC 2006 Conference (SC'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1188455.1188542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

摘要

现代取证分析应用程序,如网络流量分析,在非常大的数据集上执行高性能假设检验、知识发现和数据挖掘。减少这些操作所需时间的一个基本策略是为给定的计算只选择最相关的数据记录。在本文中,我们提出了一组并行算法,演示了有效的选择机制-位图索引-如何显着加快常见的分析任务,即在非常大的数据集上计算条件直方图。我们对并行条件直方图算法的性能特征进行了深入的研究。作为一个案例研究,我们计算条件直方图,用于检测隐藏在由大约25亿个网络连接记录组成的数据集中的分布式扫描。我们证明了这些条件直方图可以在交互时间尺度(即以秒为单位)上计算。我们还展示了如何逐步修改选择标准以缩小分析范围并找到分布式扫描的来源
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting Distributed Scans Using High-Performance Query-Driven Visualization
Modern forensic analytics applications, like network traffic analysis, perform high-performance hypothesis testing, knowledge discovery and data mining on very large datasets. One essential strategy to reduce the time required for these operations is to select only the most relevant data records for a given computation. In this paper, we present a set of parallel algorithms that demonstrate how an efficient selection mechanism - bitmap indexing - significantly speeds up a common analysis task, namely, computing conditional histogram on very large datasets. We present a thorough study of the performance characteristics of the parallel conditional histogram algorithms. As a case study, we compute conditional histograms for detecting distributed scans hidden in a dataset consisting of approximately 2.5 billion network connection records. We show that these conditional histograms can be computed on interactive time scale (i.e., in seconds). We also show how to progressively modify the selection criteria to narrow the analysis and find the sources of the distributed scans
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信