多层感知器回归的混合

R. Nakano, Seiya Satoh
{"title":"多层感知器回归的混合","authors":"R. Nakano, Seiya Satoh","doi":"10.5220/0007367405090516","DOIUrl":null,"url":null,"abstract":"This paper investigates mixture of multilayer perceptron (MLP) regressions. Although mixture of MLP regressions (MoMR) can be a strong fitting model for noisy data, the research on it has been rare. We employ soft mixture approach and use the Expectation-Maximization (EM) algorithm as a basic learning method. Our learning method goes in a double-looped manner; the outer loop is controlled by the EM and the inner loop by MLP learning method. Given data, we will have many models; thus, we need a criterion to select the best. Bayesian Information Criterion (BIC) is used here because it works nicely for MLP model selection. Our experiments showed that the proposed MoMR method found the expected MoMR model as the best for artificial data and selected the MoMR model having smaller error than any linear models for real noisy data.","PeriodicalId":410036,"journal":{"name":"International Conference on Pattern Recognition Applications and Methods","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mixture of Multilayer Perceptron Regressions\",\"authors\":\"R. Nakano, Seiya Satoh\",\"doi\":\"10.5220/0007367405090516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates mixture of multilayer perceptron (MLP) regressions. Although mixture of MLP regressions (MoMR) can be a strong fitting model for noisy data, the research on it has been rare. We employ soft mixture approach and use the Expectation-Maximization (EM) algorithm as a basic learning method. Our learning method goes in a double-looped manner; the outer loop is controlled by the EM and the inner loop by MLP learning method. Given data, we will have many models; thus, we need a criterion to select the best. Bayesian Information Criterion (BIC) is used here because it works nicely for MLP model selection. Our experiments showed that the proposed MoMR method found the expected MoMR model as the best for artificial data and selected the MoMR model having smaller error than any linear models for real noisy data.\",\"PeriodicalId\":410036,\"journal\":{\"name\":\"International Conference on Pattern Recognition Applications and Methods\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Pattern Recognition Applications and Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0007367405090516\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Pattern Recognition Applications and Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0007367405090516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究多层感知器(MLP)混合回归。虽然混合MLP回归(MoMR)可以作为噪声数据的强拟合模型,但对其研究较少。我们采用软混合方法,并使用期望最大化(EM)算法作为基本的学习方法。我们的学习方法是双循环的;外环由EM控制,内环由MLP学习方法控制。给定数据,我们将有许多模型;因此,我们需要一个标准来选择最好的。这里使用贝叶斯信息准则(BIC),因为它可以很好地用于MLP模型的选择。实验表明,本文提出的MoMR方法对人工数据的期望MoMR模型是最好的,并选择了比实际噪声数据的任何线性模型误差更小的MoMR模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mixture of Multilayer Perceptron Regressions
This paper investigates mixture of multilayer perceptron (MLP) regressions. Although mixture of MLP regressions (MoMR) can be a strong fitting model for noisy data, the research on it has been rare. We employ soft mixture approach and use the Expectation-Maximization (EM) algorithm as a basic learning method. Our learning method goes in a double-looped manner; the outer loop is controlled by the EM and the inner loop by MLP learning method. Given data, we will have many models; thus, we need a criterion to select the best. Bayesian Information Criterion (BIC) is used here because it works nicely for MLP model selection. Our experiments showed that the proposed MoMR method found the expected MoMR model as the best for artificial data and selected the MoMR model having smaller error than any linear models for real noisy data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信