Da-Yi Qu, Meng-fei Wan, Zi-lin Wang, Xiang-hua Xu, Jin-zhan Wang
{"title":"基于交通波理论的干线交通绿波协调控制方法","authors":"Da-Yi Qu, Meng-fei Wan, Zi-lin Wang, Xiang-hua Xu, Jin-zhan Wang","doi":"10.1061/JHTRCQ.0000597","DOIUrl":null,"url":null,"abstract":"To achieve green wave traffic and improve the operational efficiency of arterial traffic, this study considers the relevance of intersections and optimizes four trunk optimal control parameters, namely, signal cycle, phase sequence, split, and offset from the perspective of coordination. On the basis of traffic wave theory, vehicle queuing is explained, and the internal mechanism of green wave traffic in a large flow by-wire system is determined. An offset optimization model is established to avoid the queuing of vehicles at the downstream intersection. We select 13 intersections along Coastal Road in Qingdao City as the research object and then use optimization schemes to verify the feasibility of the arterial coordinated control optimization method and the practicability of the established model. Results indicate that cycle, phase sequence, split, and offset are important indicators of arterial coordination optimization control. Moreover, remarkable results are obtained with the optimization of the intersection offset optimization model based on traffic wave theory for the optimization of total travel time and the number of stopping vehicles.","PeriodicalId":288169,"journal":{"name":"Journal of Highway and Transportation Research and Development","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Green Wave Coordinate Control Method for Arterial Traffic Based on Traffic Wave Theory\",\"authors\":\"Da-Yi Qu, Meng-fei Wan, Zi-lin Wang, Xiang-hua Xu, Jin-zhan Wang\",\"doi\":\"10.1061/JHTRCQ.0000597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To achieve green wave traffic and improve the operational efficiency of arterial traffic, this study considers the relevance of intersections and optimizes four trunk optimal control parameters, namely, signal cycle, phase sequence, split, and offset from the perspective of coordination. On the basis of traffic wave theory, vehicle queuing is explained, and the internal mechanism of green wave traffic in a large flow by-wire system is determined. An offset optimization model is established to avoid the queuing of vehicles at the downstream intersection. We select 13 intersections along Coastal Road in Qingdao City as the research object and then use optimization schemes to verify the feasibility of the arterial coordinated control optimization method and the practicability of the established model. Results indicate that cycle, phase sequence, split, and offset are important indicators of arterial coordination optimization control. Moreover, remarkable results are obtained with the optimization of the intersection offset optimization model based on traffic wave theory for the optimization of total travel time and the number of stopping vehicles.\",\"PeriodicalId\":288169,\"journal\":{\"name\":\"Journal of Highway and Transportation Research and Development\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Highway and Transportation Research and Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1061/JHTRCQ.0000597\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Highway and Transportation Research and Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1061/JHTRCQ.0000597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Green Wave Coordinate Control Method for Arterial Traffic Based on Traffic Wave Theory
To achieve green wave traffic and improve the operational efficiency of arterial traffic, this study considers the relevance of intersections and optimizes four trunk optimal control parameters, namely, signal cycle, phase sequence, split, and offset from the perspective of coordination. On the basis of traffic wave theory, vehicle queuing is explained, and the internal mechanism of green wave traffic in a large flow by-wire system is determined. An offset optimization model is established to avoid the queuing of vehicles at the downstream intersection. We select 13 intersections along Coastal Road in Qingdao City as the research object and then use optimization schemes to verify the feasibility of the arterial coordinated control optimization method and the practicability of the established model. Results indicate that cycle, phase sequence, split, and offset are important indicators of arterial coordination optimization control. Moreover, remarkable results are obtained with the optimization of the intersection offset optimization model based on traffic wave theory for the optimization of total travel time and the number of stopping vehicles.