描述和识别监控图像的软生物特征检索

Daniel Martinho-Corbishley, M. Nixon, J. Carter
{"title":"描述和识别监控图像的软生物特征检索","authors":"Daniel Martinho-Corbishley, M. Nixon, J. Carter","doi":"10.1109/ISBA.2016.7477240","DOIUrl":null,"url":null,"abstract":"Soft biometrics are human describable, distinguishing human characteristics. We present a baseline solution to the problem of identifying individuals solely from human descriptions, by automatically retrieving soft biometric labels from images. Probe images are then identified from a gallery of known soft biometric signatures, using their predicted labels. We investigate four labelling techniques and a number of challenging re-identification scenarios with this method. We also present a novel dataset, SoBiR, consisting of 8 camera viewpoints, 100 subjects and 4 forms of comprehensive human annotation to facilitate soft biometric retrieval. We report the increased retrieval accuracy of binary labels, the generalising capability of continuous measurements and the overall performance improvement of comparative annotations over categorical annotations.","PeriodicalId":198009,"journal":{"name":"2016 IEEE International Conference on Identity, Security and Behavior Analysis (ISBA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Soft biometric retrieval to describe and identify surveillance images\",\"authors\":\"Daniel Martinho-Corbishley, M. Nixon, J. Carter\",\"doi\":\"10.1109/ISBA.2016.7477240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soft biometrics are human describable, distinguishing human characteristics. We present a baseline solution to the problem of identifying individuals solely from human descriptions, by automatically retrieving soft biometric labels from images. Probe images are then identified from a gallery of known soft biometric signatures, using their predicted labels. We investigate four labelling techniques and a number of challenging re-identification scenarios with this method. We also present a novel dataset, SoBiR, consisting of 8 camera viewpoints, 100 subjects and 4 forms of comprehensive human annotation to facilitate soft biometric retrieval. We report the increased retrieval accuracy of binary labels, the generalising capability of continuous measurements and the overall performance improvement of comparative annotations over categorical annotations.\",\"PeriodicalId\":198009,\"journal\":{\"name\":\"2016 IEEE International Conference on Identity, Security and Behavior Analysis (ISBA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Identity, Security and Behavior Analysis (ISBA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBA.2016.7477240\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Identity, Security and Behavior Analysis (ISBA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBA.2016.7477240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

软生物特征是人类可描述的、区分人类的特征。我们提出了一个基线的解决方案,以识别个人的问题,仅仅从人类的描述,通过自动检索软生物特征标签从图像。然后从已知的软生物特征库中识别探针图像,使用它们的预测标签。我们研究了四种标记技术和一些具有挑战性的重新识别场景与这种方法。我们还提出了一个新的数据集SoBiR,该数据集由8个摄像机视点,100个受试者和4种形式的综合人工注释组成,以方便软生物识别检索。我们报告了二元标签检索精度的提高,连续测量的泛化能力以及比较标注相对于分类标注的整体性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Soft biometric retrieval to describe and identify surveillance images
Soft biometrics are human describable, distinguishing human characteristics. We present a baseline solution to the problem of identifying individuals solely from human descriptions, by automatically retrieving soft biometric labels from images. Probe images are then identified from a gallery of known soft biometric signatures, using their predicted labels. We investigate four labelling techniques and a number of challenging re-identification scenarios with this method. We also present a novel dataset, SoBiR, consisting of 8 camera viewpoints, 100 subjects and 4 forms of comprehensive human annotation to facilitate soft biometric retrieval. We report the increased retrieval accuracy of binary labels, the generalising capability of continuous measurements and the overall performance improvement of comparative annotations over categorical annotations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信