基于径向基函数网络的基于按键压力的智能打字生物识别认证系统

A. Sulong, Wahyudi, M. U. Siddiqi
{"title":"基于径向基函数网络的基于按键压力的智能打字生物识别认证系统","authors":"A. Sulong, Wahyudi, M. U. Siddiqi","doi":"10.1109/CSPA.2009.5069206","DOIUrl":null,"url":null,"abstract":"Security of an information system depends to a large extent on its ability to authenticate legitimate users as well as to withstand attacks of various kinds. Confidence in its ability to provide adequate authentication is, however, waning. This is largely due to the wrongful use of passwords by many users. In this paper, the design and development of keystroke pressure-based typing biometrics for individual user's verification which based on the analysis of habitual typing of individuals is discussed. The combination of maximum pressure exerted on the keyboard and time latency between keystrokes is used as features to create typing patterns for individual users so as to recognize authentic users and to reject impostors. Radial basis function network (RBFN), which is one of the artificial neural network, is used as a pattern matching method. The effectiveness of the proposed system is evaluated based upon False Reject Rate (FRR) and False Accept Rate (FAR). A series of experiment shows that the proposed system is effective for biometric-based security system.","PeriodicalId":338469,"journal":{"name":"2009 5th International Colloquium on Signal Processing & Its Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Intelligent keystroke pressure-based typing biometrics authentication system using radial basis function network\",\"authors\":\"A. Sulong, Wahyudi, M. U. Siddiqi\",\"doi\":\"10.1109/CSPA.2009.5069206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Security of an information system depends to a large extent on its ability to authenticate legitimate users as well as to withstand attacks of various kinds. Confidence in its ability to provide adequate authentication is, however, waning. This is largely due to the wrongful use of passwords by many users. In this paper, the design and development of keystroke pressure-based typing biometrics for individual user's verification which based on the analysis of habitual typing of individuals is discussed. The combination of maximum pressure exerted on the keyboard and time latency between keystrokes is used as features to create typing patterns for individual users so as to recognize authentic users and to reject impostors. Radial basis function network (RBFN), which is one of the artificial neural network, is used as a pattern matching method. The effectiveness of the proposed system is evaluated based upon False Reject Rate (FRR) and False Accept Rate (FAR). A series of experiment shows that the proposed system is effective for biometric-based security system.\",\"PeriodicalId\":338469,\"journal\":{\"name\":\"2009 5th International Colloquium on Signal Processing & Its Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 5th International Colloquium on Signal Processing & Its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSPA.2009.5069206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 5th International Colloquium on Signal Processing & Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSPA.2009.5069206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

信息系统的安全性在很大程度上取决于其验证合法用户的能力以及抵御各种攻击的能力。然而,人们对其提供充分身份验证能力的信心正在减弱。这在很大程度上是由于许多用户错误地使用了密码。本文在分析个人打字习惯的基础上,讨论了基于按键压力的个人用户身份验证生物识别系统的设计与开发。键盘上的最大压力和按键之间的时间延迟的组合被用作特征,为个人用户创建打字模式,从而识别真实用户,拒绝冒牌客。径向基函数网络(RBFN)是人工神经网络的一种,它是一种模式匹配方法。基于错误拒绝率(FRR)和错误接受率(FAR)对系统的有效性进行了评估。一系列实验表明,该系统在基于生物特征的安全系统中是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intelligent keystroke pressure-based typing biometrics authentication system using radial basis function network
Security of an information system depends to a large extent on its ability to authenticate legitimate users as well as to withstand attacks of various kinds. Confidence in its ability to provide adequate authentication is, however, waning. This is largely due to the wrongful use of passwords by many users. In this paper, the design and development of keystroke pressure-based typing biometrics for individual user's verification which based on the analysis of habitual typing of individuals is discussed. The combination of maximum pressure exerted on the keyboard and time latency between keystrokes is used as features to create typing patterns for individual users so as to recognize authentic users and to reject impostors. Radial basis function network (RBFN), which is one of the artificial neural network, is used as a pattern matching method. The effectiveness of the proposed system is evaluated based upon False Reject Rate (FRR) and False Accept Rate (FAR). A series of experiment shows that the proposed system is effective for biometric-based security system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信