史瓦西半径—主语溶液

A. Steane
{"title":"史瓦西半径—主语溶液","authors":"A. Steane","doi":"10.1093/oso/9780192895646.003.0017","DOIUrl":null,"url":null,"abstract":"The spherically symmetric vacuum solution to the Einstein field equation (Schwarzschild-Droste solution) is derived and associated physical phenomena derived and explained. It is shown how to obtain the Christoffel symbols by the Euler-Lagrange method, and hence the metric for the general spherically symmetric vacuum. Equations for general orbits are presented, and their solution for radial motion and for circular motion. Geodetic (de Sitter) precession is calculated exactly for circular orbits. The null geodesics (photon worldlines) are obtained, and the gravitational redshift. Emission from an accretion disc is calculated.","PeriodicalId":365636,"journal":{"name":"Relativity Made Relatively Easy Volume 2","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Schwarzschild–Droste solution\",\"authors\":\"A. Steane\",\"doi\":\"10.1093/oso/9780192895646.003.0017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The spherically symmetric vacuum solution to the Einstein field equation (Schwarzschild-Droste solution) is derived and associated physical phenomena derived and explained. It is shown how to obtain the Christoffel symbols by the Euler-Lagrange method, and hence the metric for the general spherically symmetric vacuum. Equations for general orbits are presented, and their solution for radial motion and for circular motion. Geodetic (de Sitter) precession is calculated exactly for circular orbits. The null geodesics (photon worldlines) are obtained, and the gravitational redshift. Emission from an accretion disc is calculated.\",\"PeriodicalId\":365636,\"journal\":{\"name\":\"Relativity Made Relatively Easy Volume 2\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Relativity Made Relatively Easy Volume 2\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oso/9780192895646.003.0017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Relativity Made Relatively Easy Volume 2","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780192895646.003.0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

导出了爱因斯坦场方程的球对称真空解(Schwarzschild-Droste解),并推导和解释了相关的物理现象。给出了如何用欧拉-拉格朗日方法得到克里斯托费尔符号,从而得到一般球对称真空的度规。给出了一般轨道的方程及其径向运动和圆周运动的解。大地(德西特)进动是对圆形轨道精确计算的。得到了零测地线(光子世界线)和引力红移。计算了吸积盘的辐射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Schwarzschild–Droste solution
The spherically symmetric vacuum solution to the Einstein field equation (Schwarzschild-Droste solution) is derived and associated physical phenomena derived and explained. It is shown how to obtain the Christoffel symbols by the Euler-Lagrange method, and hence the metric for the general spherically symmetric vacuum. Equations for general orbits are presented, and their solution for radial motion and for circular motion. Geodetic (de Sitter) precession is calculated exactly for circular orbits. The null geodesics (photon worldlines) are obtained, and the gravitational redshift. Emission from an accretion disc is calculated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信