Julian D'Costa, T. Karimov, J. Ouaknine, Mahmoud Salamati, S. Soudjani, J. Worrell
{"title":"可对角线性动力系统的伪可达性问题","authors":"Julian D'Costa, T. Karimov, J. Ouaknine, Mahmoud Salamati, S. Soudjani, J. Worrell","doi":"10.48550/arXiv.2204.12253","DOIUrl":null,"url":null,"abstract":"We study fundamental reachability problems on pseudo-orbits of linear dynamical systems. Pseudo-orbits can be viewed as a model of computation with limited precision and pseudo-reachability can be thought of as a robust version of classical reachability. Using an approach based on $o$-minimality of $\\reals_{\\exp}$ we prove decidability of the discrete-time pseudo-reachability problem with arbitrary semialgebraic targets for diagonalisable linear dynamical systems. We also show that our method can be used to reduce the continuous-time pseudo-reachability problem to the (classical) time-bounded reachability problem, which is known to be conditionally decidable.","PeriodicalId":369104,"journal":{"name":"International Symposium on Mathematical Foundations of Computer Science","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The Pseudo-Reachability Problem for Diagonalisable Linear Dynamical Systems\",\"authors\":\"Julian D'Costa, T. Karimov, J. Ouaknine, Mahmoud Salamati, S. Soudjani, J. Worrell\",\"doi\":\"10.48550/arXiv.2204.12253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study fundamental reachability problems on pseudo-orbits of linear dynamical systems. Pseudo-orbits can be viewed as a model of computation with limited precision and pseudo-reachability can be thought of as a robust version of classical reachability. Using an approach based on $o$-minimality of $\\\\reals_{\\\\exp}$ we prove decidability of the discrete-time pseudo-reachability problem with arbitrary semialgebraic targets for diagonalisable linear dynamical systems. We also show that our method can be used to reduce the continuous-time pseudo-reachability problem to the (classical) time-bounded reachability problem, which is known to be conditionally decidable.\",\"PeriodicalId\":369104,\"journal\":{\"name\":\"International Symposium on Mathematical Foundations of Computer Science\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Mathematical Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2204.12253\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Mathematical Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2204.12253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Pseudo-Reachability Problem for Diagonalisable Linear Dynamical Systems
We study fundamental reachability problems on pseudo-orbits of linear dynamical systems. Pseudo-orbits can be viewed as a model of computation with limited precision and pseudo-reachability can be thought of as a robust version of classical reachability. Using an approach based on $o$-minimality of $\reals_{\exp}$ we prove decidability of the discrete-time pseudo-reachability problem with arbitrary semialgebraic targets for diagonalisable linear dynamical systems. We also show that our method can be used to reduce the continuous-time pseudo-reachability problem to the (classical) time-bounded reachability problem, which is known to be conditionally decidable.