需求不确定性下城市电动汽车充电站选址的两阶段随机规划模型

IF 2.1 Q2 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
S.A. MirHassani, A. Khaleghi, F. Hooshmand
{"title":"需求不确定性下城市电动汽车充电站选址的两阶段随机规划模型","authors":"S.A. MirHassani,&nbsp;A. Khaleghi,&nbsp;F. Hooshmand","doi":"10.1016/j.ejtl.2020.100025","DOIUrl":null,"url":null,"abstract":"<div><p>Due to the dangerous effects of fossil fuels, policymakers tend to substitute fossil-fuel-based vehicles with electric ones. Thus, the optimal design of a charging station network providing convenient access for the users is of great importance. This paper presents a two-stage stochastic programming model for the problem of locating charging stations in urban areas. Parking lots around the buildings which may be visited by people during the day are considered as potential locations for charger installation. The model determines the parking lots that should be equipped with chargers and the number as well as the type of chargers that must be placed in each parking lot considering the demand as an uncertain parameter. The proposed model is examined on the dataset of a midtown area, taken from the literature, and an efficient heuristic algorithm based on Benders decomposition is utilized to solve the model. The results indicate that the heuristic method can find a near-optimal solution (with the optimality gap of at most 0.05%) in a short time.</p></div>","PeriodicalId":45871,"journal":{"name":"EURO Journal on Transportation and Logistics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ejtl.2020.100025","citationCount":"11","resultStr":"{\"title\":\"Two-stage stochastic programming model to locate capacitated EV-charging stations in urban areas under demand uncertainty\",\"authors\":\"S.A. MirHassani,&nbsp;A. Khaleghi,&nbsp;F. Hooshmand\",\"doi\":\"10.1016/j.ejtl.2020.100025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Due to the dangerous effects of fossil fuels, policymakers tend to substitute fossil-fuel-based vehicles with electric ones. Thus, the optimal design of a charging station network providing convenient access for the users is of great importance. This paper presents a two-stage stochastic programming model for the problem of locating charging stations in urban areas. Parking lots around the buildings which may be visited by people during the day are considered as potential locations for charger installation. The model determines the parking lots that should be equipped with chargers and the number as well as the type of chargers that must be placed in each parking lot considering the demand as an uncertain parameter. The proposed model is examined on the dataset of a midtown area, taken from the literature, and an efficient heuristic algorithm based on Benders decomposition is utilized to solve the model. The results indicate that the heuristic method can find a near-optimal solution (with the optimality gap of at most 0.05%) in a short time.</p></div>\",\"PeriodicalId\":45871,\"journal\":{\"name\":\"EURO Journal on Transportation and Logistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.ejtl.2020.100025\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURO Journal on Transportation and Logistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2192437620301552\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURO Journal on Transportation and Logistics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2192437620301552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 11

摘要

由于化石燃料的危险影响,政策制定者倾向于用电动汽车代替化石燃料汽车。因此,为用户提供方便的充电站网络优化设计具有重要意义。针对城市充电站选址问题,提出了一个两阶段随机规划模型。白天可能有人光顾的建筑物周围的停车场被认为是安装充电器的潜在地点。该模型将需求作为一个不确定参数,确定了需要设置充电器的停车场,以及每个停车场必须设置的充电器的数量和类型。本文利用文献中的中城数据集对该模型进行了验证,并利用基于Benders分解的高效启发式算法对模型进行求解。结果表明,启发式方法可以在较短的时间内找到近似最优解(最优性差距不超过0.05%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two-stage stochastic programming model to locate capacitated EV-charging stations in urban areas under demand uncertainty

Due to the dangerous effects of fossil fuels, policymakers tend to substitute fossil-fuel-based vehicles with electric ones. Thus, the optimal design of a charging station network providing convenient access for the users is of great importance. This paper presents a two-stage stochastic programming model for the problem of locating charging stations in urban areas. Parking lots around the buildings which may be visited by people during the day are considered as potential locations for charger installation. The model determines the parking lots that should be equipped with chargers and the number as well as the type of chargers that must be placed in each parking lot considering the demand as an uncertain parameter. The proposed model is examined on the dataset of a midtown area, taken from the literature, and an efficient heuristic algorithm based on Benders decomposition is utilized to solve the model. The results indicate that the heuristic method can find a near-optimal solution (with the optimality gap of at most 0.05%) in a short time.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
24
审稿时长
129 days
期刊介绍: The EURO Journal on Transportation and Logistics promotes the use of mathematics in general, and operations research in particular, in the context of transportation and logistics. It is a forum for the presentation of original mathematical models, methodologies and computational results, focussing on advanced applications in transportation and logistics. The journal publishes two types of document: (i) research articles and (ii) tutorials. A research article presents original methodological contributions to the field (e.g. new mathematical models, new algorithms, new simulation techniques). A tutorial provides an introduction to an advanced topic, designed to ease the use of the relevant methodology by researchers and practitioners.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信