应用自动化规划技术完成医学知识库

D. Dosyn, Andriy Yatsenko, V. Kovalevych, Y. Daradkeh
{"title":"应用自动化规划技术完成医学知识库","authors":"D. Dosyn, Andriy Yatsenko, V. Kovalevych, Y. Daradkeh","doi":"10.23939/sisn2022.12.177","DOIUrl":null,"url":null,"abstract":"The widespread implementation of intelligent decision support systems (IDSS) is hampered by the lack of methods and technologies for automatically filling the knowledge base during the operation of such systems. This problem is especially acute in the medical field. Its solution lies in the application of automatic planning technologies. The methods and algorithms developed in this field for estimation the optimal strategy for solving problems, which are strictly formulated in terms of predicate logic, allow numerically evaluating the usefulness of new messages and thus ranking information by importance and automatically selecting essential information for entering it into the knowledge base. The paper proposes the architecture of a medical IDSS that implements this approach, substantiates the applicability of the Markov approximation for the formalization of automatic planning tasks in the medical field, shows the effectiveness of the proposed approach using the example of an informed choice of serum for influenza vaccination.","PeriodicalId":444399,"journal":{"name":"Vìsnik Nacìonalʹnogo unìversitetu \"Lʹvìvsʹka polìtehnìka\". Serìâ Ìnformacìjnì sistemi ta merežì","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of automated planning technologies for completing the medical knowledge base\",\"authors\":\"D. Dosyn, Andriy Yatsenko, V. Kovalevych, Y. Daradkeh\",\"doi\":\"10.23939/sisn2022.12.177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The widespread implementation of intelligent decision support systems (IDSS) is hampered by the lack of methods and technologies for automatically filling the knowledge base during the operation of such systems. This problem is especially acute in the medical field. Its solution lies in the application of automatic planning technologies. The methods and algorithms developed in this field for estimation the optimal strategy for solving problems, which are strictly formulated in terms of predicate logic, allow numerically evaluating the usefulness of new messages and thus ranking information by importance and automatically selecting essential information for entering it into the knowledge base. The paper proposes the architecture of a medical IDSS that implements this approach, substantiates the applicability of the Markov approximation for the formalization of automatic planning tasks in the medical field, shows the effectiveness of the proposed approach using the example of an informed choice of serum for influenza vaccination.\",\"PeriodicalId\":444399,\"journal\":{\"name\":\"Vìsnik Nacìonalʹnogo unìversitetu \\\"Lʹvìvsʹka polìtehnìka\\\". Serìâ Ìnformacìjnì sistemi ta merežì\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vìsnik Nacìonalʹnogo unìversitetu \\\"Lʹvìvsʹka polìtehnìka\\\". Serìâ Ìnformacìjnì sistemi ta merežì\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23939/sisn2022.12.177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vìsnik Nacìonalʹnogo unìversitetu \"Lʹvìvsʹka polìtehnìka\". Serìâ Ìnformacìjnì sistemi ta merežì","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23939/sisn2022.12.177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

智能决策支持系统(IDSS)的广泛实施由于缺乏在这种系统运行期间自动填充知识库的方法和技术而受到阻碍。这个问题在医学领域尤为突出。其解决方案在于自动规划技术的应用。该领域开发的方法和算法用于估计解决问题的最佳策略,这些方法和算法严格按照谓词逻辑制定,允许对新消息的有用性进行数值评估,从而按重要性对信息进行排序,并自动选择必要的信息进入知识库。本文提出了实现该方法的医疗IDSS架构,证实了马尔可夫近似在医疗领域自动规划任务形式化中的适用性,并通过流感疫苗接种血清的知情选择示例显示了所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of automated planning technologies for completing the medical knowledge base
The widespread implementation of intelligent decision support systems (IDSS) is hampered by the lack of methods and technologies for automatically filling the knowledge base during the operation of such systems. This problem is especially acute in the medical field. Its solution lies in the application of automatic planning technologies. The methods and algorithms developed in this field for estimation the optimal strategy for solving problems, which are strictly formulated in terms of predicate logic, allow numerically evaluating the usefulness of new messages and thus ranking information by importance and automatically selecting essential information for entering it into the knowledge base. The paper proposes the architecture of a medical IDSS that implements this approach, substantiates the applicability of the Markov approximation for the formalization of automatic planning tasks in the medical field, shows the effectiveness of the proposed approach using the example of an informed choice of serum for influenza vaccination.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信