用于神经形态计算的超导光电网络设计

S. Buckley, A. McCaughan, J. Chiles, R. Mirin, S. Nam, J. Shainline, Grant Bruer, J. Plank, Catherine D. Schuman
{"title":"用于神经形态计算的超导光电网络设计","authors":"S. Buckley, A. McCaughan, J. Chiles, R. Mirin, S. Nam, J. Shainline, Grant Bruer, J. Plank, Catherine D. Schuman","doi":"10.1109/ICRC.2018.8638595","DOIUrl":null,"url":null,"abstract":"We have previously proposed a novel hardware platform (SOEN) for neuromorphic computing based on superconducting optoelectronics that presents many of the features necessary for information processing in the brain. Here we discuss the design and training of networks of neurons and synapses based on this technology. We present circuit models for the simplest neurons and synapses that we can use to build networks. We discuss the further abstracted integrate and fire model that we use for evolutionary optimization of small networks of these neurons. We show that we can use the TENNLab evolutionary optimization programming framework to design small networks for logic, control and classification tasks. We plan to use the results as feedback to inform our neuron design.","PeriodicalId":169413,"journal":{"name":"2018 IEEE International Conference on Rebooting Computing (ICRC)","volume":"1998 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Design of Superconducting Optoelectronic Networks for Neuromorphic Computing\",\"authors\":\"S. Buckley, A. McCaughan, J. Chiles, R. Mirin, S. Nam, J. Shainline, Grant Bruer, J. Plank, Catherine D. Schuman\",\"doi\":\"10.1109/ICRC.2018.8638595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have previously proposed a novel hardware platform (SOEN) for neuromorphic computing based on superconducting optoelectronics that presents many of the features necessary for information processing in the brain. Here we discuss the design and training of networks of neurons and synapses based on this technology. We present circuit models for the simplest neurons and synapses that we can use to build networks. We discuss the further abstracted integrate and fire model that we use for evolutionary optimization of small networks of these neurons. We show that we can use the TENNLab evolutionary optimization programming framework to design small networks for logic, control and classification tasks. We plan to use the results as feedback to inform our neuron design.\",\"PeriodicalId\":169413,\"journal\":{\"name\":\"2018 IEEE International Conference on Rebooting Computing (ICRC)\",\"volume\":\"1998 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Rebooting Computing (ICRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRC.2018.8638595\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Rebooting Computing (ICRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRC.2018.8638595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

我们之前提出了一种基于超导光电子学的神经形态计算的新型硬件平台(SOEN),该平台具有大脑信息处理所需的许多特征。在此,我们讨论了基于该技术的神经元和突触网络的设计和训练。我们提出了最简单的神经元和突触的电路模型,我们可以用它们来构建网络。我们讨论了进一步抽象的集成和火模型,我们用于这些神经元的小网络的进化优化。我们表明,我们可以使用TENNLab进化优化规划框架来设计用于逻辑、控制和分类任务的小型网络。我们计划利用这些结果作为反馈来指导我们的神经元设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of Superconducting Optoelectronic Networks for Neuromorphic Computing
We have previously proposed a novel hardware platform (SOEN) for neuromorphic computing based on superconducting optoelectronics that presents many of the features necessary for information processing in the brain. Here we discuss the design and training of networks of neurons and synapses based on this technology. We present circuit models for the simplest neurons and synapses that we can use to build networks. We discuss the further abstracted integrate and fire model that we use for evolutionary optimization of small networks of these neurons. We show that we can use the TENNLab evolutionary optimization programming framework to design small networks for logic, control and classification tasks. We plan to use the results as feedback to inform our neuron design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信